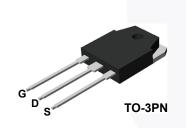
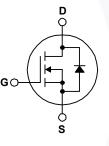


FDA28N50 N-Channel UniFETTM MOSFET 500 V, 28 A, 155 mΩ

Features

- $R_{DS(on)}$ = 122 m Ω (Typ.) @ V_{GS} = 10 V, I_D = 14 A
- Low Gate Charge (Typ. 80 nC)
- Low C_{rss} (Typ. 42 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications


- PDP TV
- Uninterruptible Power Supply
- AC-DC Power Supply

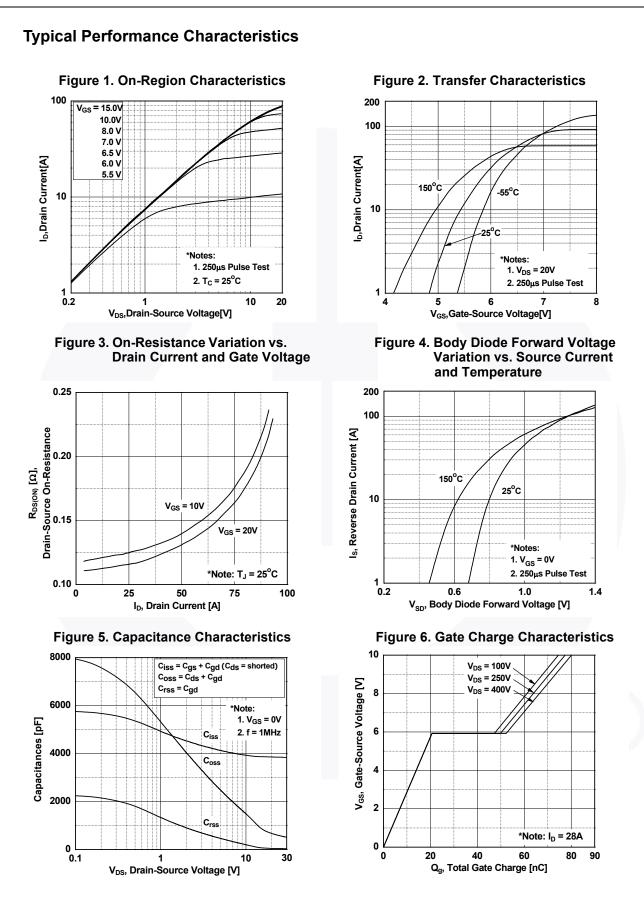
May 2014

Description

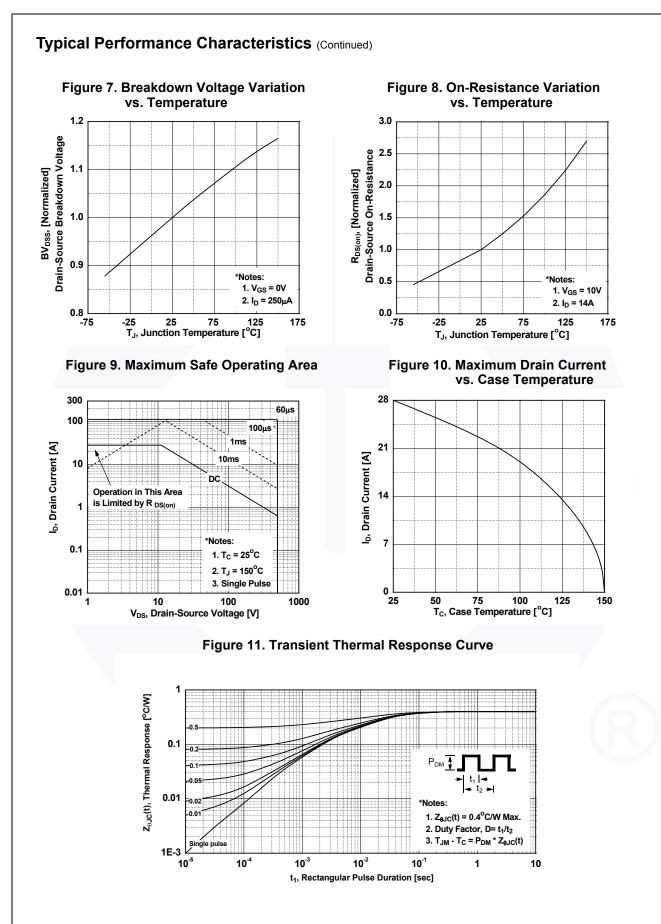
UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol		Parameter		FDA28N50	Unit
V _{DSS}	Drain to Source Voltage		500	V	
V _{GSS}	Gate to Source Voltage			±30	V
ID	Drain Current	- Continuous (T _C = 25 ^o C)		28	Α
		- Continuous ($T_C = 100^{\circ}C$)		17	
I _{DM}	Drain Current	- Pulsed	(Note 1)	112	А
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	2391	mJ
I _{AR}	Avalanche Current		(Note 1)	28	А
E _{AR}	Repetitive Avalanche Energy		(Note 1)	31	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	5	V/ns
P _D	Power Dissipation	$(T_{\rm C} = 25^{\rm o}{\rm C})$		310	W
		- Derate Above 25°C		2.5	W/ºC
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C
TL	Maximum Lead Temperatu	re for Soldering, 1/8" from Case for 5	Seconds	300	°C

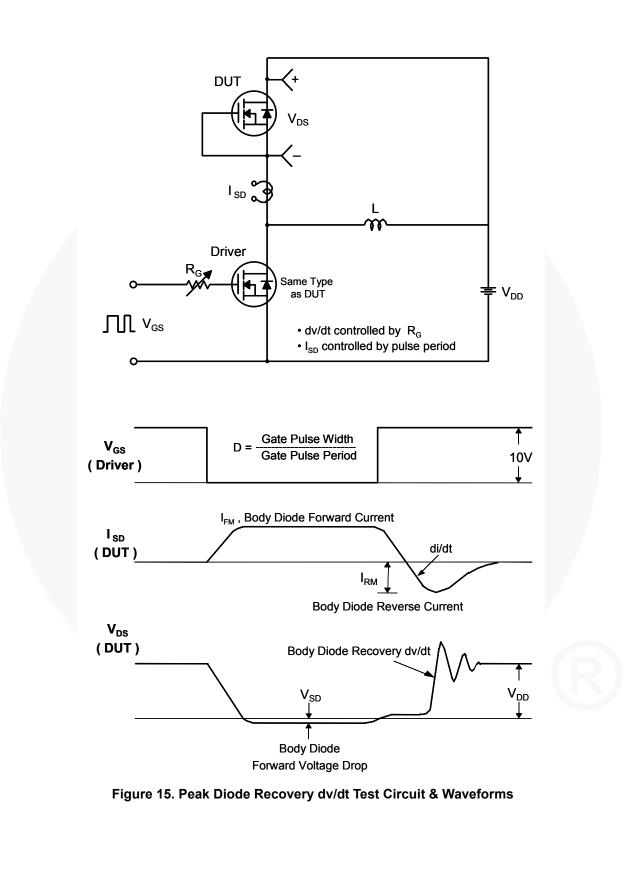

Thermal Characteristics

Symbol	Parameter	FDA28N50	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case, Max.	0.4	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient, Max.	40	


FDA28N50
— N-Channel
MOSFET

-

N/A Min. Typ 500 - - 0.5 - 0.5 - - 3.0 - - 0.12 - 34	 Max. - 9 - 10 ±100 ±100 25.0 0.155 	units Uni V V/°C μA nA
500 - - 0.5 - - - - - - 3.0 - - 0.12	- 9 - 1 10 ±100 22 0.155	V V/°C μΑ nA
500 - - 0.5 - - - - - - 3.0 - - 0.12	- 9 - 1 10 ±100 22 0.155	V V/°C μΑ nA
- 0.5 3.0 - 0.12	1 10 ±100 5.0 22 0.155	V/ºC μA nA
- 0.5 3.0 - 0.12	1 10 ±100 5.0 22 0.155	V/ºC μA nA
 3.0 - - 0.12	1 10 ±100 5.0 22 0.155	μA nA
 3.0 - - 0.12	1 10 ±100 5.0 22 0.155	μA nA
 3.0 - - 0.12	10 ±100 5.0 22 0.155	nA
 3.0 - - 0.12	±100 5.0 22 0.155	nA
3.0 - - 0.12	5.0 22 0.155	1
- 0.12	0.155	V
- 0.12	0.155	V
- 34		Ω
	- 1	S
206	C 5140	~
- 386		pF pF
- 42		pF
- 42		nC
- 21		nC
- 32		nC
	•	
- 56	122	ns
- 126	6 262	ns
- 210	0 430	ns
- 110	230	ns
	28	A
		A
		V
		ns
		μC
	- 120 - 210 - 110 	- 126 262 - 210 430 - 110 230 28 112 1.4 - 530 -



©2008 Fairchild Semiconductor Corporation FDA28N50 Rev. C2

 V_{GS} ξ ק Q_g V_{DS} Q_{gd} Q_{gs} • DUT I_G = const. Charge Figure 12. Gate Charge Test Circuit & Waveform R VDS V_{DS} 90% ο V_{DD} GS R_{G} 10% V_{GS} DUT V_{GS} ∏ o Figure 13. Resistive Switching Test Circuit & Waveforms L $E_{AS} = \frac{1}{2} L I_{AS}^2$ V_{DS} $\mathsf{BV}_{\mathsf{DSS}}$ ID o AS R_{G} **∔** ∨_{DD} $I_{D}(t)$ V_{GS} $V_{DS}(t)$ V_{DD} DUT Time t_p Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

FDA28N50 — N-Channel UniFETTM MOSFET

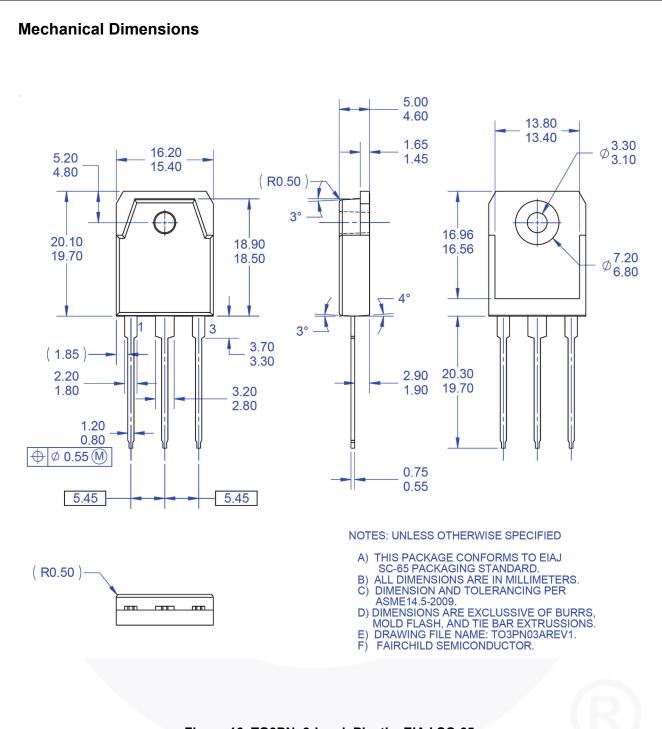


Figure 16. TO3PN, 3-Lead, Plastic, EIAJ SC-65

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3PN-003

FDA28N50 — N-Channel UniFETTM MOSFET

Semiconductor. The datasheet is for reference information only.

Rev. 168

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC