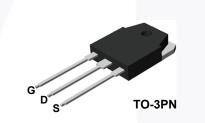
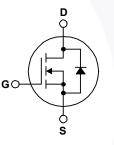


N-Channel UniFETTM MOSFET 250 V, 59 A, 49 m Ω

Features

- $R_{DS(on)}$ = 49 m Ω (Max.) @ V_{GS} = 10 V, I_D = 29.5 A
- Low Gate Charge (Typ. 63 nC)
- Low C_{rss} (Typ. 70 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications


- PDP TV
- Uninterruptible Power Supply
- AC-DC Power Supply

April 2014

Description

UniFETTM MOSFET is Fairchild Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

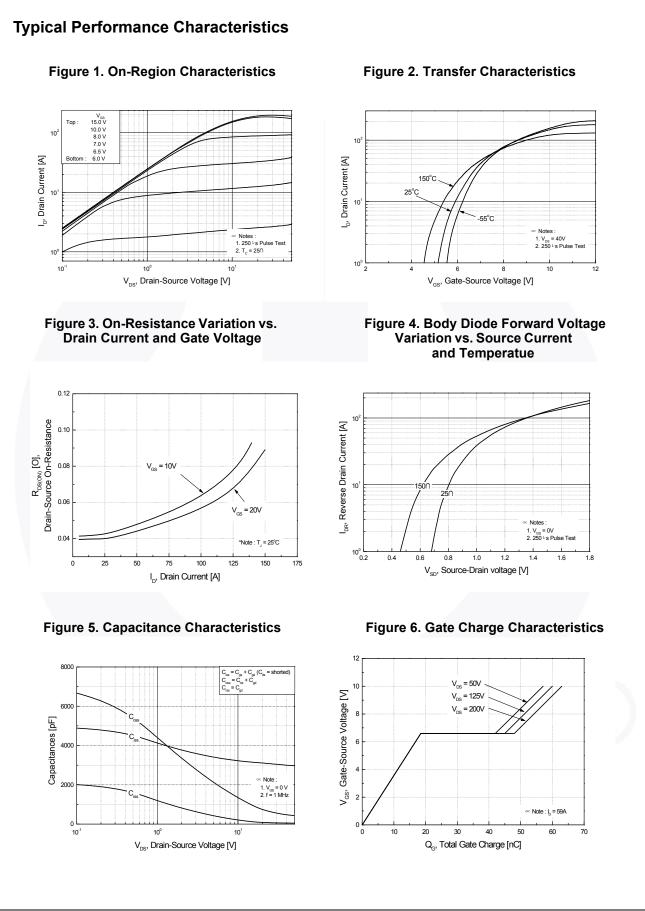
Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FDA59N25	Unit		
V _{DSS}	Drain to Source Voltage		250	V		
V _{DS(Avalanche)}	Repetitive Avalanche Volta	age	(Note 1,2)	300	V	
V _{GSS}	Gate to Source Voltage			±30	V	
	Droin Current	- Continuous (T _C = 25 ^o C)		59		
	Drain Current	- Continuous (T _C = 100 ^o C)		35	A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	236	Α	
E _{AS}	Single Pulsed Avalanche Energy (Note 2		(Note 2)	1458	mJ	
I _{AR}	Avalanche Current		(Note 1)	59	Α	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	39.2	mJ	
dv/dt	Peak Diode Recovery dv/dt (Note 3)		(Note 3)	4.5	V/ns	
P _D	Power Dissipation	(T _C = 25 ^o C)		392	W	
		- Derate Above 25°C		3.2	W/ ^o C	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds		5 Seconds	300	°C	

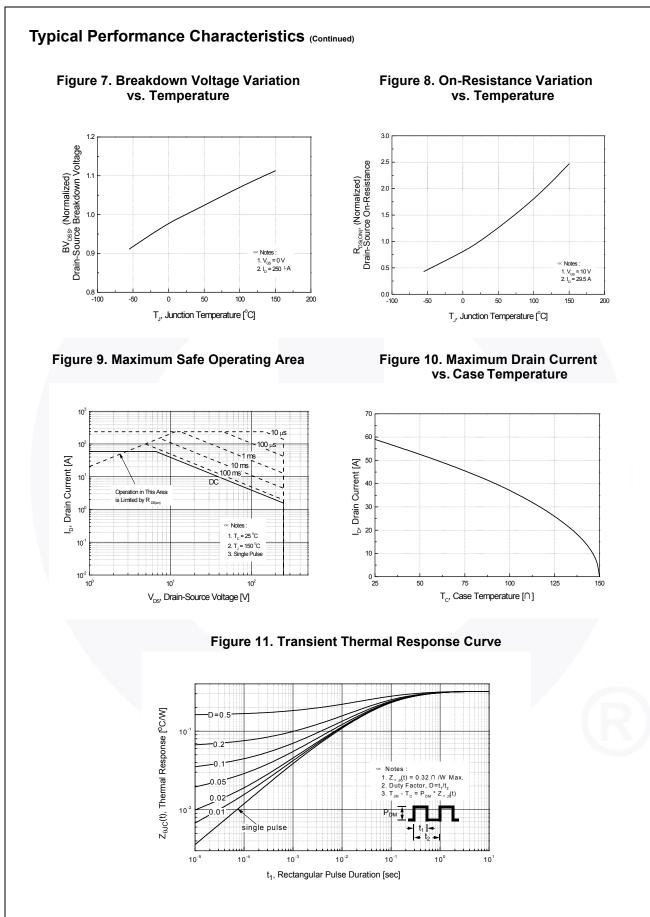
Thermal Characteristics

Symbol	Parameter	FDA59N25	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	0.32	
$R_{\theta CS}$	Thermal Resistance, Case to Sink, Typ.	0.24	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient, Max.	40	

Part Number Top Mark		Top Mark	Package	Package Packing Method Reel Size		Та	pe Width	Qu	antity
		TO-3PN			N/A		30 units		
Electric	al Chara	ICTERISTICS $T_{c} = 25^{\circ}C \text{ ur}$	less otherwise n	oted					
Symbol		Parameter		Conditions		Min.	Тур.	Мах	Unit
Off Charac	teristics				1				
BV _{DSS}	Drain-Source	ce Breakdown Voltage	V _{GS} = 0	V _{GS} = 0 V, I _D = 250 μA		250			V
ΔΒV _{DSS} / ΔΤ _J	Breakdown Coefficient	Voltage Temperature	I _D = 250	$I_D = 250 \ \mu$ A, Referenced to 25°C			0.25		V/°C
I _{DSS}	Zero Gate Voltage Drain Current		50	$V_{DS} = 250 \text{ V}, V_{GS} = 0 \text{ V}$ $V_{DS} = 200 \text{ V}, T_{C} = 125^{\circ}\text{C}$				1 10	μΑ μΑ
I _{GSSF}	Gate-Body	Leakage Current, Forward	V _{GS} = 3	0 V, V _{DS} = 0 V				100	nA
I _{GSSR}	Gate-Body	Leakage Current, Reverse	V _{GS} = -3	30 V, V _{DS} = 0 V				-100	nA
On Charac	teristics								
V _{GS(th)}	Gate Threshold Voltage		V _{DS} = V	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$		3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance		V _{GS} = 1	V _{GS} = 10 V, I _D = 29.5 A			0.041	0.049	Ω
9 _{FS}	Forward Transconductance		V _{DS} = 4	V _{DS} = 40 V, I _D = 29.5 A			45		S
Dynamic C	haracteristic	cs					-		
C _{iss}	Input Capad	citance	50	$V_{DS} = 25 V, V_{GS} = 0 V,$ f = 1 MHz			3090	4020	pF
C _{oss}	Output Cap	pacitance	f = 1 M⊦				630	820	pF
C _{rss}	Reverse Transfer Capacitance						70	110	pF
Switching	Characterist	tics							
t _{d(on)}	Turn-On Delay Time			V _{DD} = 125 V, I _D = 59 A			70	150	ns
t _r	Turn-On Ris	se Time	V _{GS} = 1	V _{GS} = 10 V, R _G = 25 Ω			480	970	ns
t _{d(off)}	Turn-Off De	elay Time					90	190	ns
t _f	Turn-Off Fa	III Time			(Note 4)		170	350	ns
Qg	Total Gate	Charge		$V_{DS} = 200 \text{ V}, \text{ I}_{D} = 59 \text{ A}$ $V_{GS} = 10 \text{ V}$ (Note 4)			63	82	nC
Q _{gs}	Gate-Sourc	e Charge	V _{GS} = 1			-	18.5		nC
Q _{gd}	Gate-Drain	Charge					30		nC
Drain-Sou	rce Diode Ch	naracteristics and Maximu	m Ratings						
I _S Maximum Continuous Drain-Source Diod		ode Forward	I Current				59	Α	
I _{SM}	Maximum F	Pulsed Drain-Source Diode	Forward Cur	rent				236	Α
V _{SD}	Drain-Source	ce Diode Forward Voltage	V _{GS} = 0	V, I _S = 59 A				1.4	V
t _{rr}	Reverse Re	ecovery Time		V, I _S = 59 A,			190		ns
Q _{rr}	Reverse Re	ecovery Charge	dI _F /dt =′	dI _F /dt =100 A/μs			4.4		μC

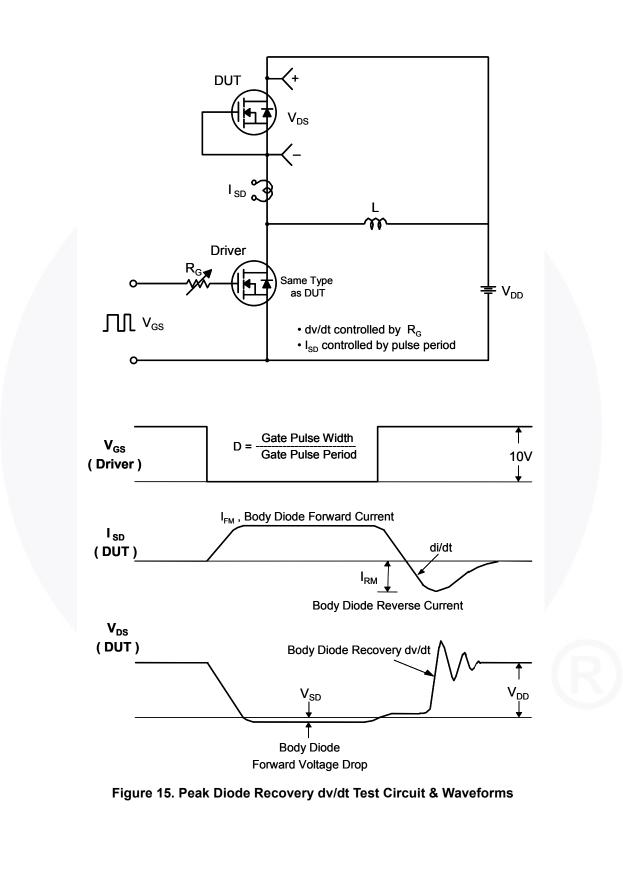

Notes:

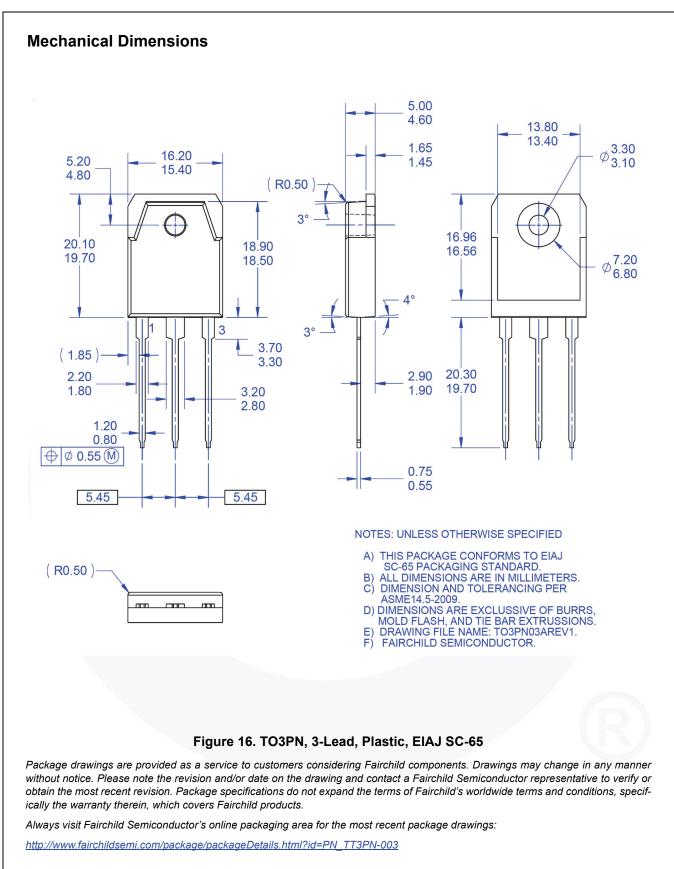
1. Repetitive rating: pulse-width limited by maximum junction temperature.


2. L = 0.67 mH, I_{AS} = 59 A, V_{DD} = 50 V, R_G = 25 $\Omega,$ starting T_J = 25°C.

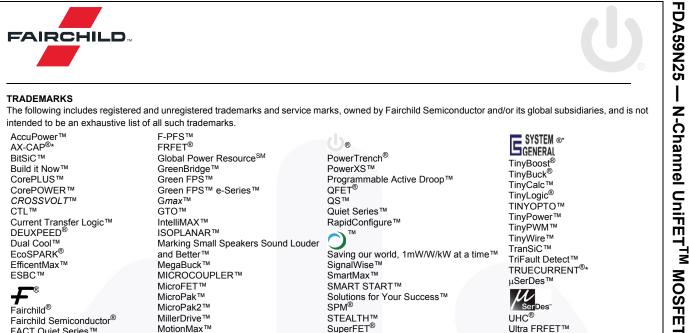
3. I_{SD} \leq 59 A, di/dt \leq 200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.

4. Essentially independent of operating temperature typical characteristics.


©2005 Fairchild Semiconductor Corporation FDA59N25 Rev. C2



4


 V_{GS} ξ ק Q_g = V_{DS} Q_{gs} Q_{gd} • DUT I_G = const. Charge Figure 12. Gate Charge Test Circuit & Waveform R VDS VDS 90% О V_{DD} R_{G} 10% V_{GS} DUT V_{GS} ∏ 0 Figure 13. Resistive Switching Test Circuit & Waveforms $\mathsf{BV}_{\mathsf{DSS}}$ L $E_{AS} = \frac{1}{2} L I_{AS}^2$ BV_{DSS} - V_{DD} VDS $\mathsf{BV}_{\mathsf{DSS}}$ D I_{AS} R_G = V_{DD} $I_{D}(t)$ DUT V_{DD} V_{DS}(t) 10V Time t_p Figure 14. Unclamped Inductive Switching Test Circuit & Waveforms

FDA59N25 — N-Channel UniFETTM MOSFET

7

AccuPower™

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AX-CAP [®] * BitSiC™ Build it Now™	FRFET [®] Global Power Resource SM GreenBridge™	PowerTrench [®] PowerXS™	
CorePLUS [™] CorePOWER [™] <i>CROSSVOLT</i> [™] CTL [™] Current Transfer Logic [™] DEUXPEED [®] Dual Cool [™] EcoSPARK [®]	Green FPS [™] Green FPS [™] e-Series [™] Gmax [™] GTO [™] IntelliMAX [™] ISOPLANAR [™] Marking Small Speakers Sound Loude and Better [™]	Programmable Active Droop™ QFET [®] QS™ Quiet Series™ RapidConfigure™ er Saving our world, 1mW/W/kW at a time™	TinyBuck [®] TinyCalc™ TinyLogic [®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™
EfficentMax [™] ESBC [™] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FETBench [™] FPS [™]	MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak2™ MillerDrive™ MotionMax™ mWSave® OptoHiT™ OPTOLOGIC® OPTOPLANAR®	SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™ Sync-Lock™	TRUECURRENT [®] * µSerDes [™] UHC [®] Ultra FRFET [™] VCX [™] VisualMax [™] VoltagePlus [™] XS [™] 仙童 [™]
Trademarks of System General C	Corporation, used under license by Fairch	iliu Semiconductor.	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

F-PFS™

A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

SYSTEM ®*

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.