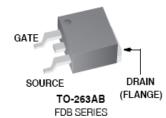
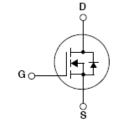


ON Semiconductor®

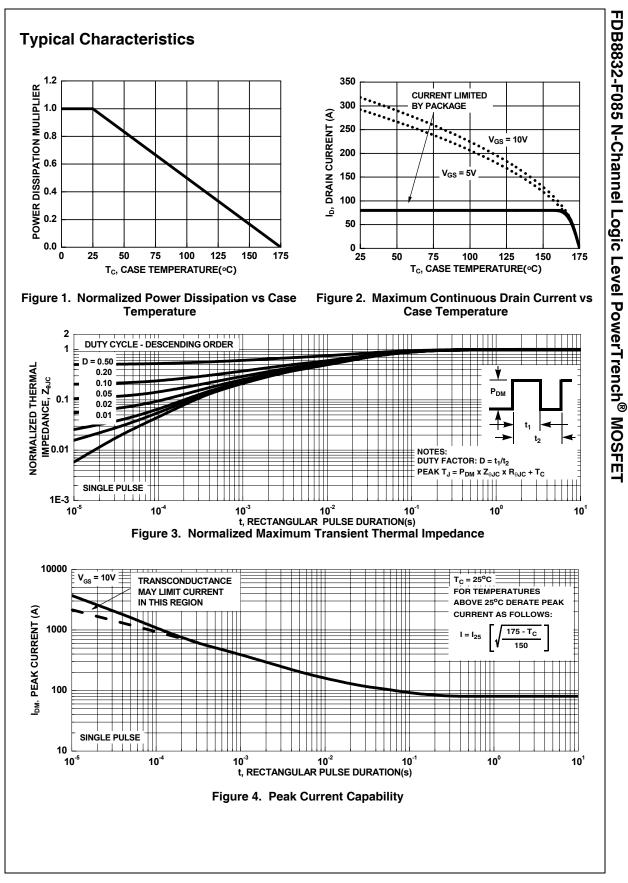
FDB8832-F085

N-Channel Logic Level PowerTrench[®] MOSFET 30V, 80A, 2.1m Ω

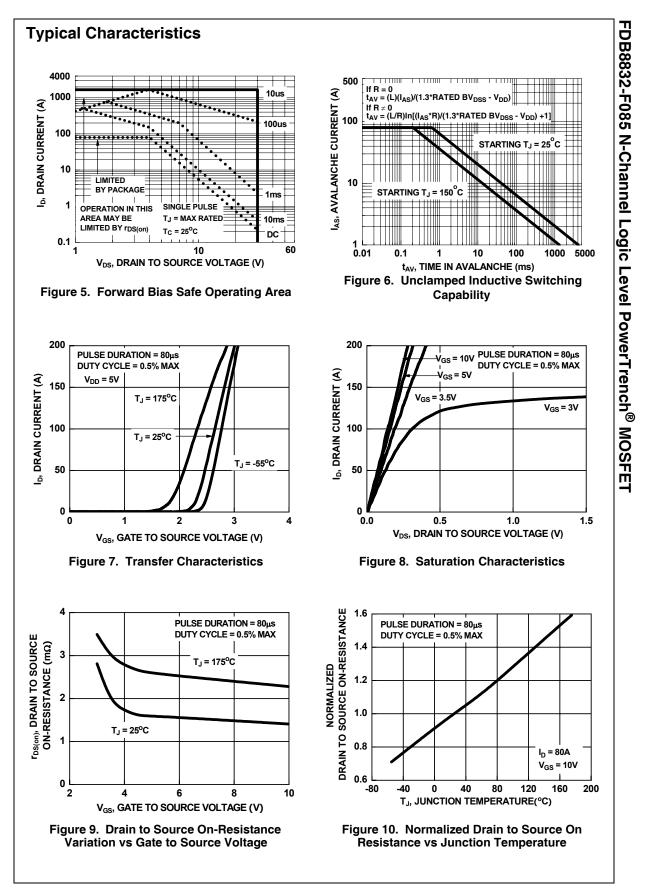

Features


- Typ $r_{DS(on)}$ = 1.5m Ω at V_{GS} = 5V, I_D = 80A
- Typ $Q_{g(5)} = 100nC$ at $V_{GS} = 5V$
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse and Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

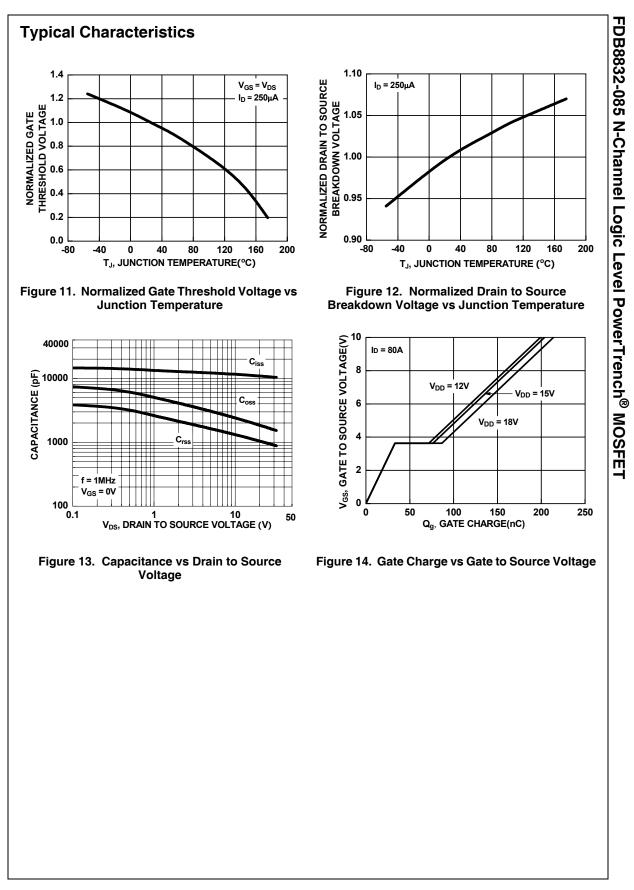
- 12V Automotive Load Control
- Starter / Alternator Systems
- Electronic Power Steering Systems
- ABS
- DC-DC Converters



Symbol			er				Ratings			Units	
V _{DSS}	Drain to Source Voltage								30		
V _{GS}		urce Voltage						±20			V
	Drain Current Continuous ($T_C < 165^{\circ}C$, $V_{GS} = 10V$)							80			
I _D	Drain Current Continuous ($T_C < 163^{\circ}C$, $V_{GS} = 5V$)							80			A
D	Drain Current Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 43^{\circ}C/W$)							34			
_	Pulsed							See Figure 4			
E _{AS}	-	se Avalanche Energ	ду	(Note 1)			1)	1246			mJ
P _D	Power Dise								300		W
	Derate abo		oroturo.					2 -55 to +175			0°W
T _J , T _{STG} Thorm		and Storage Temp	erature						-55 10 +17	5	
R _{ejc}		esistance, Junction	to Case					0.5			°C/W
R _{θJA}			(Note 2)			2)	62			°C/W	
R _{θJA}	Thermal Resistance, Junction to Ambien Thermal Resistance, Junction to Ambien			. ,			-1	43			°C/W
						a			43		0/1
		king and Or Device	Packag		Reel Siz	20	Tane	Widt	h	Quan	tity
	38832	FDB8832-F085	TO-263	5			-	24mm		800 units	
		1			I	I			I		
Electr	ical Cha	aracteristics	$T_J = 25^{\circ}C$	unless	otherwise no	oted					
Symbol		Parameter			Test Cond	itions	Ν	lin	Тур	Max	Units
-	aracterist	ics									1
B _{VDSS}	1	ource Breakdown V	/oltage	I _D = 2	250μA, V _{GS} =	= 0V	3	80	-	-	V
1	Zoro Goto	Zara Cata Valtaga Drain Current		V _{DS} :	$V_{DS} = 24V$			-	-	1	μA
IDSS		Zero Gate Voltage Drain Current			$V_{GS} = 0V$ $T_J = 150^{\circ}C$			-	-	250	μΛ
I _{GSS}	Gate to So	ource Leakage Curi	rent	V _{GS}	= ±20V			-	-	±100	nA
On Cha	racterist	ics									
VGS(th)	Gate to Sc	Gate to Source Threshold Voltage									
V _{GS(th)}		burce i mresnola vo	ltage	V _{DS} =	= V _{GS} , I _D = 2	50μΑ	1	.0	1.6	3.0	V
V _{GS(th)}		burce Threshold Vo	ltage		= V _{GS} , I _D = 2 30A, V _{GS} = 1		1	.0	1.6 1.4	3.0 1.9	V
V _{GS(th)}		burce Threshold Vo	ltage	I _D = 8		0V		.0 - -			V
	Drain to Se	ource On Resistan		$I_{D} = 8$ $I_{D} = 8$	30A, V _{GS} = 1	0V V		-	1.4	1.9	-
V _{GS(th)} r _{DS(on)}	Drain to Se			$I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$	30A, V _{GS} = 1 30A, V _{GS} = 5	0V V .5V		-	1.4 1.5	1.9 2.1	V
r _{DS(on)} Dynam				$I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$	30A, V _{GS} = 1 30A, V _{GS} = 5 30A, V _{GS} = 4 30A, V _{GS} = 1	0V V .5V		-	1.4 1.5 1.6	1.9 2.1 2.2	-
r _{DS(on)} Dynam C _{iss}	ic Charao	ource On Resistan cteristics acitance		$I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$ $T_{J} = 8$	30A, V _{GS} = 1 30A, V _{GS} = 5 30A, V _{GS} = 4 30A, V _{GS} = 1 175°C	0V V .5V 0V		-	1.4 1.5 1.6	1.9 2.1 2.2	-
r _{DS(on)} Dynam C _{iss} C _{oss}	ic Charao Input Capa Output Ca	ource On Resistan cteristics acitance pacitance	ce	$I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$ $I_{D} = 8$ $T_{J} = 8$	30A, V _{GS} = 1 30A, V _{GS} = 5 30A, V _{GS} = 4 30A, V _{GS} = 1 175°C = 15V, V _{GS} =	0V V .5V 0V		-	1.4 1.5 1.6 2.3 11400 2140	1.9 2.1 2.2 3.0	mΩ pF pF
r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss}	ic Charao Input Capa Output Ca Reverse T	ource On Resistand cteristics acitance pacitance ransfer Capacitanc	ce	$I_{D} = \begin{cases} I_{D} = \\ I_{D} = \\ \\ I_{D} = \\ \\ \\ I_{D} = \\ \\ \\ \\ T_{J} = \end{cases}$ $V_{DS} = \\ -f = 1 \end{cases}$	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} =$ MHz	0V V .5V 0V		-	1.4 1.5 1.6 2.3 11400 2140 1260	1.9 2.1 2.2 3.0	mΩ pF
r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss} R _G	ic Charao Input Capa Output Ca Reverse T Gate Resis	ource On Resistand cteristics acitance pacitance iransfer Capacitanc stance	ce	$ I_{D} = 8 I_{D} = 8 I_{D} = 8 I_{D} = 8 T_{J} = V_{DS} = f = 11 V_{GS} = V_{GS} = V_{SS} = $	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} =$ MHz = 0.5V, f = 11	0V V .5V 0V		-	1.4 1.5 1.6 2.3 11400 2140 1260 1.2	1.9 2.1 2.2 3.0 - - - -	mΩ pF pF pF
r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)}	ic Charac Input Capa Output Ca Reverse T Gate Resis Total Gate	ource On Resistand cteristics acitance pacitance iransfer Capacitance stance e Charge at 10V	ce	$I_{D} = \{ B \\ I_{D} = \{ B \\ $	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} =$ MHz = 0.5V, f = 11 = 0 to 10V	0V V .5V 0V		-	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204	1.9 2.1 2.2 3.0 - - - - 265	mΩ pF pF Ω nC
r _{DS(on)} Dynam C _{iss} C _{oss} C _{rss} R _G Q _{g(TOT)} Q _{g(5)}	ic Charac Input Capa Output Ca Reverse T Gate Resis Total Gate Total Gate	ource On Resistant cteristics acitance pacitance iransfer Capacitance stance Charge at 10V a Charge at 5V	ce	$ \begin{array}{c} I_{D} = 8 \\ T_{J} = \end{array} $ $ \begin{array}{c} V_{DS} = \\ f = 11 \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ \end{array} $	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} = 1$ Hz = 0.5V, f = 1N = 0 to 10V = 0 to 5V	0V V .5V 0V : 0V, MHz		-	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100	1.9 2.1 2.2 3.0 - - - 265 130	mΩ pF pF Ω nC nC
r _{DS(on)} Dynam C _{iss} C _{rss} R _G Q _{g(TOT)} Q _{g(5)} Q _{g(TH)}	ic Charao Input Capa Output Ca Reverse T Gate Resis Total Gate Total Gate Threshold	cteristics acitance pacitance ransfer Capacitance stance charge at 10V charge at 5V Gate Charge	ce	$ \begin{array}{c} I_{D} = 8 \\ T_{J} = \end{array} $ $ \begin{array}{c} V_{DS} = \\ f = 11 \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ \end{array} $	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} =$ MHz = 0.5V, f = 11 = 0 to 10V	0V V .5V 0V : 0V, MHz V _{DD} = 15V I _D = 80A		-	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100 10.9	1.9 2.1 2.2 3.0 - - - 265 130 14.2	mΩ pF pF Ω nC nC
r _{DS(on)} Dynam C _{iss} C _{css} C _{rss} R _G Q _{g(TOT)} Q _{g(5)} Q _{g(TH)} Q _{gs}	ic Charao Input Capa Output Ca Reverse T Gate Resis Total Gate Total Gate Threshold Gate to Sc	cteristics acitance pacitance ransfer Capacitance stance charge at 10V charge at 5V Gate Charge pource Gate Charge	ce ce	$ \begin{array}{c} I_{D} = 8 \\ T_{J} = \end{array} $ $ \begin{array}{c} V_{DS} = \\ f = 11 \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ \end{array} $	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} = 1$ Hz = 0.5V, f = 1N = 0 to 10V = 0 to 5V	0V V .5V 0V		-	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100 10.9 33	1.9 2.1 2.2 3.0 - - - 265 130	mΩ pF pF Ω nC nC nC
r _{DS(on)} Dynam C _{iss} C _{rss} R _G Q _{g(TOT)} Q _{g(5)} Q _{g(TH)}	ic Charao Input Capa Output Ca Reverse T Gate Resis Total Gate Total Gate Threshold Gate to Sc Gate Char	cteristics acitance pacitance ransfer Capacitance stance charge at 10V charge at 5V Gate Charge	ce ce ce	$ \begin{array}{c} I_{D} = 8 \\ T_{J} = \end{array} $ $ \begin{array}{c} V_{DS} = \\ f = 11 \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ V_{GS} = \\ \end{array} $	30A, $V_{GS} = 1$ 30A, $V_{GS} = 5$ 30A, $V_{GS} = 4$ 30A, $V_{GS} = 1$ 175°C = 15V, $V_{GS} = 1$ Hz = 0.5V, f = 1N = 0 to 10V = 0 to 5V	0V V .5V 0V : 0V, MHz V _{DD} = 15V I _D = 80A		-	1.4 1.5 1.6 2.3 11400 2140 1260 1.2 204 100 10.9	1.9 2.1 2.2 3.0 - - - 265 130 14.2	mΩ pF pF Ω nC nC


FDB8832-F085 N-Channel Logic Level PowerTrench[®] MOSFET

	Test Conditions	Min	Тур	Max	Units
ng Characteristics					
Turn-On Time		-	-	155	ns
Turn-On Delay Time	V_{DD} = 15V, I _D = 80A V _{GS} = 5V, R _{GS} = 1.5Ω	-	24	-	ns
Turn-On Rise Time		-	73	-	ns
Turn-Off Delay Time		-	54	-	ns
Turn-Off Fall Time		-	38	-	ns
Turn-Off Time		-	-	149	ns
	Turn-On Time Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	Turn-On Time Turn-On Delay Time Turn-On Rise Time VDD = 15V, ID = 80A VGS = 5V, RGS = 1.5Ω Turn-Off Fall Time	Turn-On Time-Turn-On Delay Time-Turn-On Rise TimeVTurn-Off Delay TimeVTurn-Off Fall Time-Turn-Off Fall Time-	Turn-On Time - - Turn-On Delay Time - 24 Turn-On Rise Time $V_{DD} = 15V, I_D = 80A$ - 73 Turn-Off Delay Time $V_{GS} = 5V, R_{GS} = 1.5\Omega$ - 54 Turn-Off Fall Time - 38 - 38	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $


Notes: 1: Starting T_J = 25°C, L = 0.61mH, I_{AS} = 64A, V_{DD} = 30V, V_{GS} = 10V. 2: Pulse width = 100s.

www.onsemi.com 4

www.onsemi.com 5

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative