

MO-299A

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

Symbol	Paramet	ter		Ratings	Units
V _{DS}	Drain to Source Voltage			100	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous	T _C = 25°C	(Note 5)	200	
D	-Continuous	-Continuous T _C = 100°C (Note 5) -Pulsed (Note 4)	(Note 5)	140	Α
	-Pulsed		1000		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	866	mJ
D	Power Dissipation	T _C = 25°C		250	14/
P _D	Power Dissipation	T _A = 25°C	(Note 1a)	3.5	W
T _J , T _{STG}	Operating and Storage Junction Temperate	ure Range		-55 to +175	°C
Fhermal Ch	naracteristics				
$R_{\theta JC}$	Thermal Resistance, Junction to Case		(Note 1)	0.6	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient		(Note 1a)	43	C/vv

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDBL0260N100	FDBL0260N100	MO-299A	-	-	-

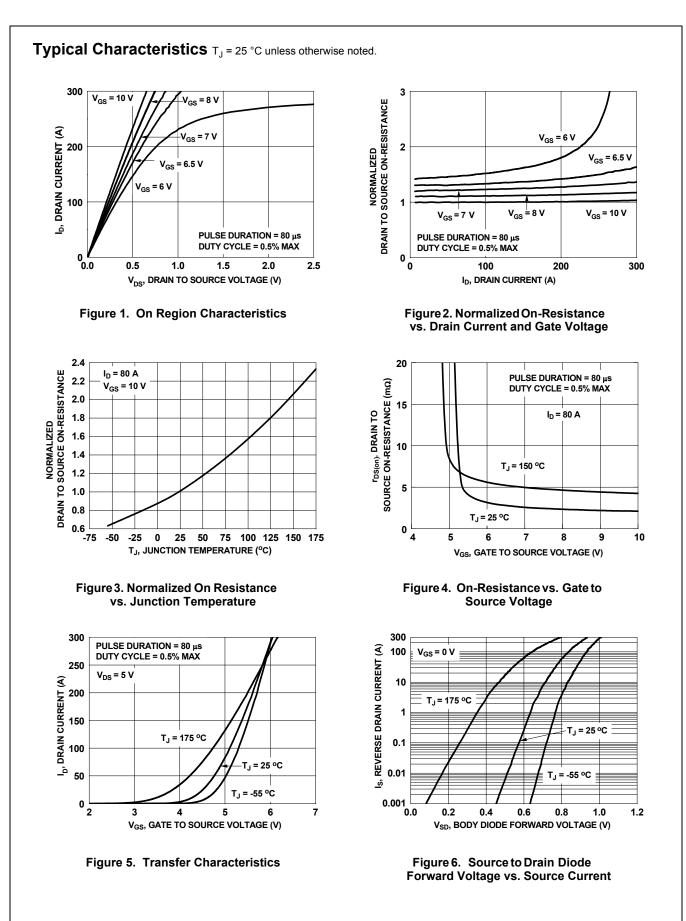
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	100			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		53		mV/°C
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μA
GSS	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	2	2.7	4	V
DS(on)	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 80 \text{ A}$		2.1	2.6	mΩ
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-13		mV/°C
				4=0		~
	Forward Transconductance Characteristics	V _{DS} = 10 V, I _D = 80 A		170		S
Dynamic C _{iss} C _{oss}	Characteristics Input Capacitance Output Capacitance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 80 \text{ A}$ 		6175 1330	9265 1995	pF pF
C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	— V _{DS} = 50 V, V _{GS} = 0 V, — f = 1 MHz		6175 1330 40		pF pF pF
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance Output Capacitance			6175 1330	1995	pF pF
Dynamic D _{iss} D _{oss} D _{rss} R _g Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance	— V _{DS} = 50 V, V _{GS} = 0 V, — f = 1 MHz		6175 1330 40	1995	pF pF pF
Dynamic Diss Doss Drss Rg Gwitching d(on)	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics	— V _{DS} = 50 V, V _{GS} = 0 V, — f = 1 MHz		6175 1330 40 2.6	1995 60	pF pF pF Ω
Dynamic Diss Doss Drss G Switching d(on)	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time	$V_{DS} = 50 V, V_{GS} = 0 V,$ f = 1 MHz $V_{GS} = 0.5V, f = 1MHz$		6175 1330 40 2.6 26	1995 60 42	pF pF pF Ω ns
Dynamic Diss Dis	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{GS} = 0.5\text{V}, \text{ f} = 1\text{MHz}$ $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 80 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		6175 1330 40 2.6 26 34	1995 60 42 54	pF pF Ω ns
Dynamic Diss Dis	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz $V_{GS} = 0.5\text{V}, \text{ f} = 1\text{ MHz}$ $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 80 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ to } 10 \text{ V}$		6175 1330 40 2.6 26 34 47	1995 60 42 54 75	pF pF pF Ω ns ns
Dynamic 2_{iss} 2_{oss} 2_{rss} 3_{g} Switching d(on) r d(off) f $2_{g(TOT)}$ $2_{q(th)}$	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Threshold Gate Charge	$V_{DS} = 50 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz $V_{GS} = 0.5\text{ V}, \text{ f} = 1\text{ MHz}$ $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 80 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ to } 10 \text{ V}$ $V_{GS} = 0 \text{ to } 2 \text{ V}$ $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 50 \text{ V},$		6175 1330 40 2.6 26 34 47 19 83 11	1995 60 42 54 75 34	pF pF pF Ω ns ns ns ns
Dynamic C _{iss} C _{oss} C _{rss}	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1 MHz $V_{GS} = 0.5\text{V}, \text{ f} = 1\text{ MHz}$ $V_{DD} = 50 \text{ V}, \text{ I}_{D} = 80 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ to } 10 \text{ V}$		6175 1330 40 2.6 26 34 47 19 83	1995 60 42 54 75 34 116	pF pF Ω ns ns ns ns ns

I _S	Maximum Continuous Drain to Source Diode Forward Current			-	-	200	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current			-	-	1000	Α
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 80 A	(Note 2)		0.8	1.3	V
	Source to Drain Diode Forward voltage	V _{GS} = 0 V, I _S = 40 A	(Note 2)		0.8	1.2	v
t _{rr}	Reverse Recovery Time	- I _F = 80 A, di/dt = 100 A/μs			71	113	ns
Q _{rr}	Reverse Recovery Charge	F = 00 A, 01/01 = 100 A		121	194	nC	

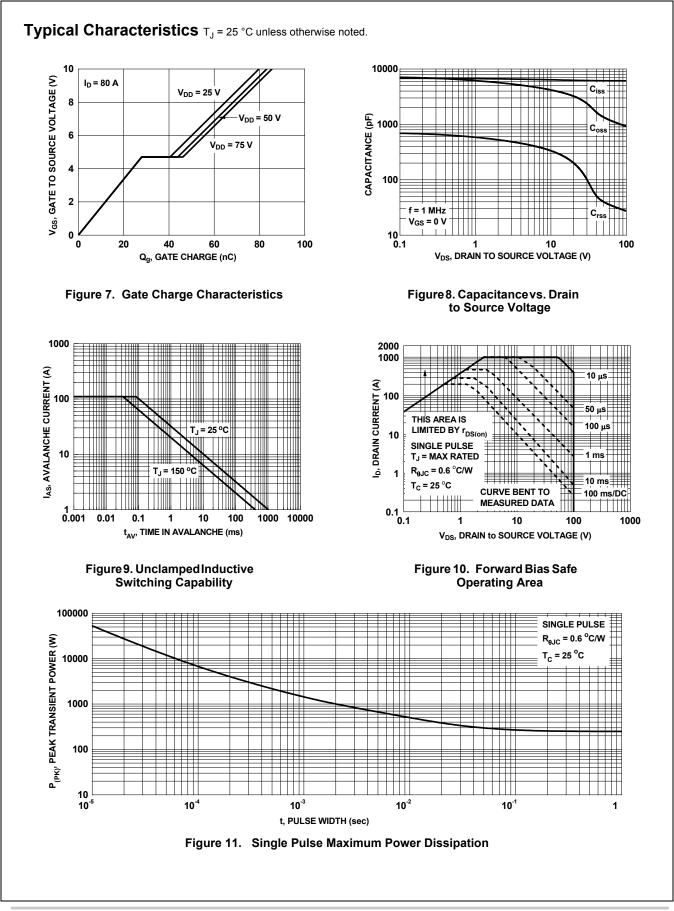
Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

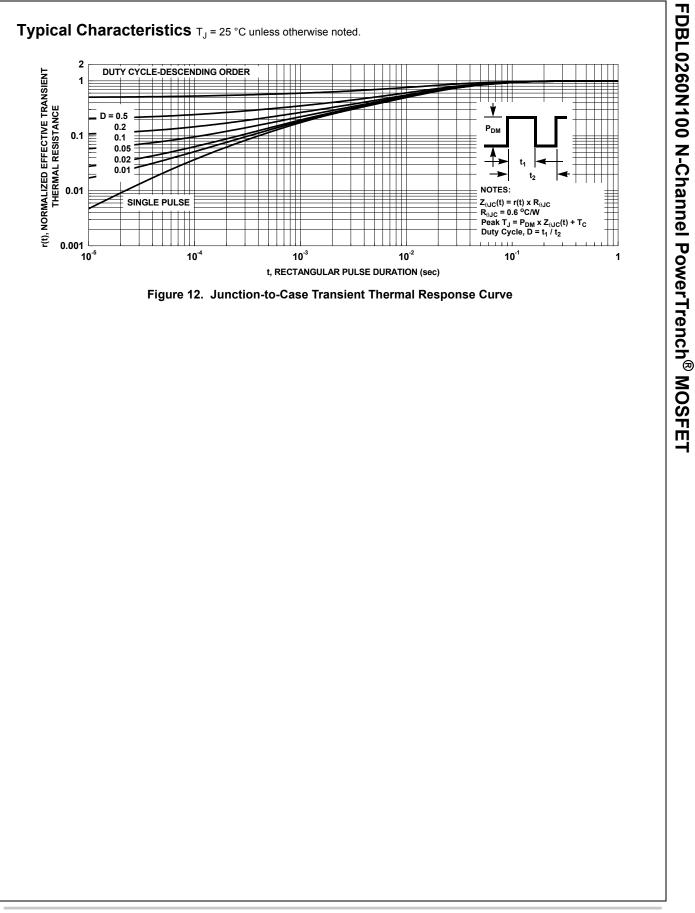
a) 43 °C/W when mounted on a 1 in² pad of 2 oz copper.

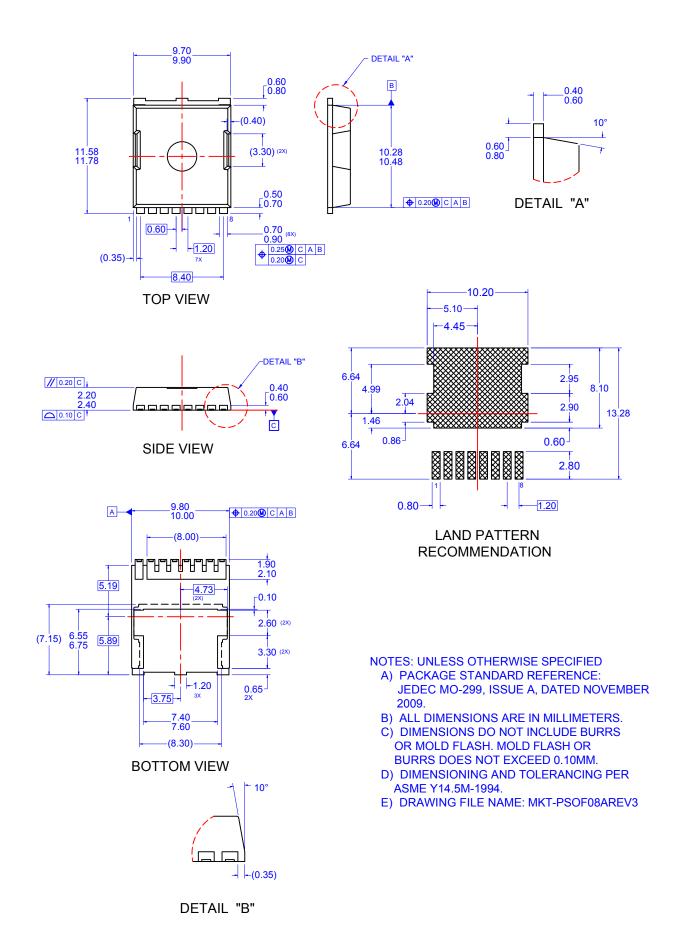

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.

3. E_{AS} of 866 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 76 A, V_{DD} = 90 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 110 A.


4. Pulsed Id please refer to Figure "Forward Bias Safe Operating Area" for more details.

5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.


FDBL0260N100 N-Channel PowerTrench[®] MOSFET



www.onsemi.com

FDBL0260N100 N-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC