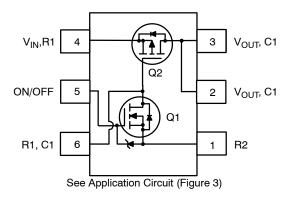
<u>Onsemí</u>,


Integrated Load Switch FDC6326L

Description

This device is particularly suited for compact power management in portable electronic equipment where 3 V to 20 V input and 1.8 A output current capability are needed. This load switch integrates a small N–Channel power MOSFET (Q1) which drives a large P–Channel power MOSFET (Q2) in one tiny SUPERSOTTM–6 package.

Features

- $V_{DROP} = 0.20 \text{ V}$ @ $V_{IN} = 12 \text{ V}$, $I_L = 1.5 \text{ A}$, $R_{DS(on)} = 0.125 \Omega$
- $V_{DROP} = 0.20 \text{ V} @ V_{IN} = 5 \text{ V}, I_L = 1 \text{ A}, R_{DS(on)} = 0.20 \Omega$
- SUPERSOT-6 Package Design Using Copper Lead Frame for Superior Thermal and Electrical Capabilities
- This is a Pb-Free and Halide Free Device

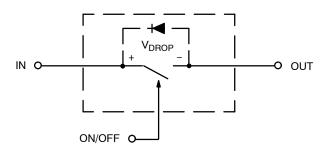


Figure 2. Equivalent Circuit

TSOT-23-6 CASE 419BL

MARKING DIAGRAM

- &E = Designates Space &Y = Binary Calendar Ye
 - = Binary Calendar Year Coding Scheme
 - = Pin One Dot
- 326 = Specific Device Code

&G = Date Code

&.

ORDERING INFORMATION

Device	Package	Shipping [†]
FDC6326L	TSOT-23-6 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, <u>BRD8011/D.</u>

FDC6326L

ABSOLUTE MAXIMUM RATINGS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Unit	
V _{IN}	Input Voltage Range	3–20	V	
V _{ON/OFF}	On/Off Voltage Range	2.5–8	V	
١L	Load Current – Continuous (Note 1)	1.8	А	
	Load Current – Pulsed (Note 1, Note 3)	5		
PD	Maximum Power Dissipation (Note 2)	0.7	W	
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to 150	°C	
ESD	Electrostatic Discharge Rating MIL-STD-883D Human Body Model (100 pF/1500 Ω)	6	kV	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Unit
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 2)	180	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 2)	60	°C/W

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
OFF CHARAC	TERISTICS	•	•			
I _{FL}	Forward Leakage Current	$V_{IN} = 20 \text{ V}, V_{ON/OFF} = 0 \text{ V}$	-	-	1	μA
ON CHARAC	TERISTICS (Note 3)					
V _{DROP}	Conduction Voltage Drop	V_{IN} = 12 V, $V_{ON/OFF}$ = 3.3 V, I_L = 1.5 A	-	0.15	0.2	V
		V_{IN} = 5 V, $V_{ON/OFF}$ = 3.3 V, I_L = 1 A	-	0.14	0.2	
R _{DS(on)} Q	Q ₂ – Static On–Resistance	$V_{GS} = -12 \text{ V}, \text{ I}_{D} = -1.9 \text{ A}$	-	0.095	0.125	Ω
		$V_{GS} = -5 \text{ V}, \text{ I}_{D} = -1.5 \text{ A}$	-	0.14	0.2	
١L	Load Current	V_{DROP} = 0.125 V, V_{IN} = 12 V, $V_{ON/OFF}$ = 3.3 V	1	-	-	А
		V _{DROP} = 0.20 V, V _{IN} = 5 V, V _{ON/OFF} = 3.3 V	1	-	-	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

NOTES:

1. $V_{IN} = 20 \text{ V}, V_{ON/OFF} = 8 \text{ V}, T_A = 25^{\circ}\text{C}$ 2. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design. 3. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

FDC6326L

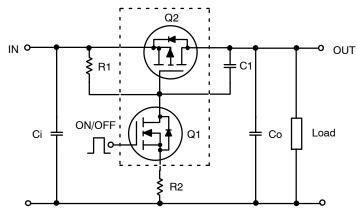
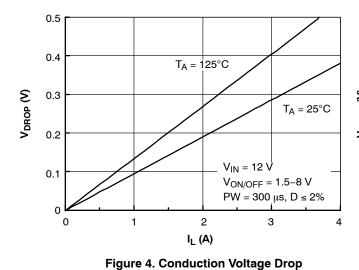


Figure 3. FDC6326L Load Switch Application


External Component Recommendation:

First select R2, 100-1 kΩ, for Slew Rate control.

C1 \leq 1000 pF can be added in addition to R2 for further In-rush current control.

Then select R1 such that R1/R2 ratio maintains between 10–100. R1 is required to turn Q2 off.

For SPICE simulation, users can download a "FDC6326L.MOD" Spice model from ON Semiconductor Web Site at www.onsemi.com

TYPICAL CHARACTERISTICS

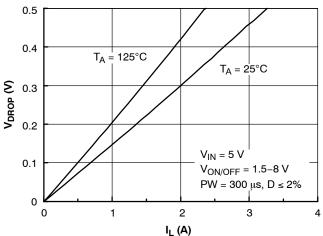
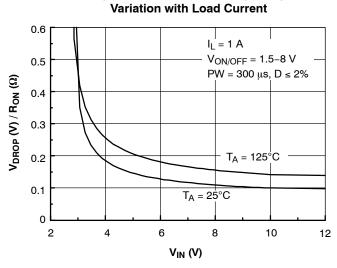



Figure 5. Conduction Voltage Drop Variation with Load Current

FDC6326L

TYPICAL CHARACTERISTICS (continued)

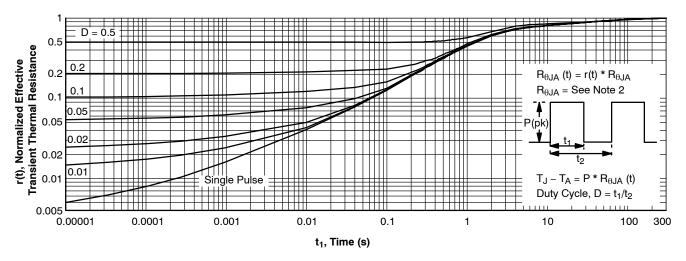
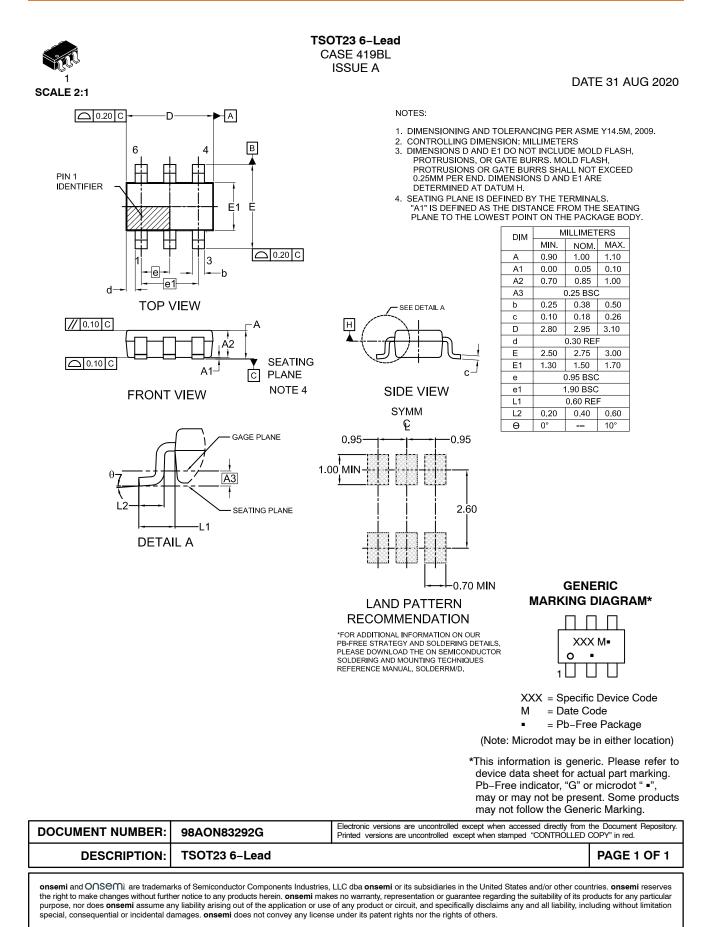



Figure 7. Transient Thermal Response Curve

NOTE: Thermal characterization performed on the conditions described in Note 2.

SUPERSOT is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the united states and/or other countries.

onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>