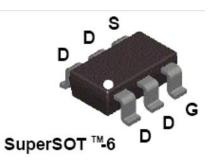


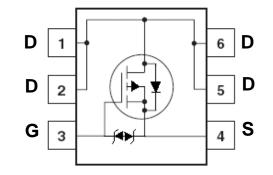
ON Semiconductor[®]

FDC642P Single P-Channel 2.5V Specified PowerTrench[®] MOSFET -20 V, -4.0 A, 65 m Ω

Features

- Max $r_{DS(on)}$ = 65 m Ω at V_{GS} = -4.5 V, I_D = -4.0 A
- Max $r_{DS(on)}$ = 100 m Ω at V_{GS} = -2.5 V, I_D = -3.2 A
- Fast switching speed
- Low gate charge (11nC typical)
- High performance trench technology for extremely low r_{DS(on)}
- SuperSOTTM-6 package: small footprint (72% smaller than standard SO-8); low profile (1 mm thick)
- Termination is Lead-free and RoHS Compliant


General Description


This P-Channel 2.5V specified MOSFET is produced using ON Semicondcutor's advanced PowerTrench[®] process that has been especially tailored to minimize on-state resistance and yet maintain low gate charge for superior switching performance.

These devices have been designed to offer exceptional power dissipation in a very small footprint for applications where the larger packages are impractical.

Applications

- Load switch
- Battery protection
- Power management

MOSFET Maximum Ratings T_C = 25°C unless otherwise noted

Symbol	Parame	Ratings	Units			
V _{DS}	Drain to Source Voltage			-20	V	
V _{GS}	Gate to Source Voltage			±8	V	
1	-Continuous	T _A = 25°C	(Note 1a)	-4.0	٨	
D	-Pulsed			-20	Α	
D	Power Dissipation		(Note 1a)	1.6	w	
P _D	Power Dissipation (Note 1b)			0.8	V	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to + 150	°C	

Thermal Characteristics

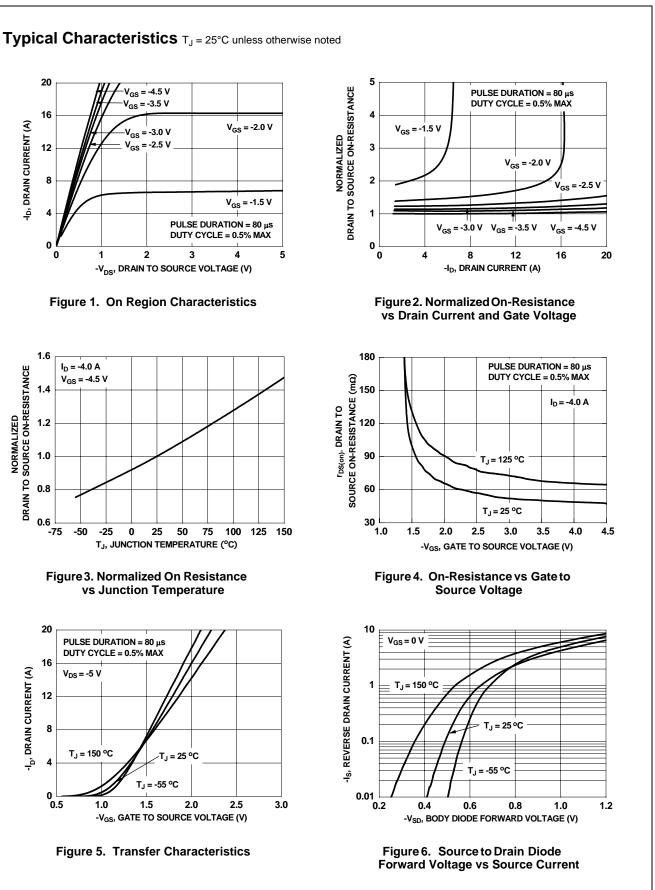
	$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	78
--	-----------------	---	-----------	----

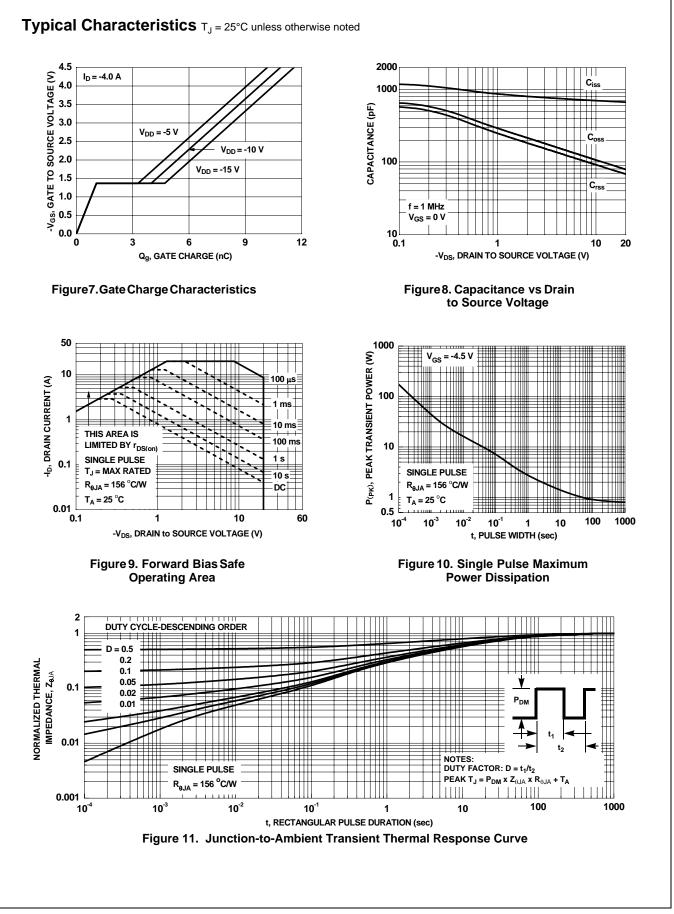
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
.642	FDC642P	SSOT-6 [™]	7 "	8 mm	3000 units

°C/W

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250 \ \mu A, V_{GS} = 0 \ V$	-20			V	
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25°C		-13		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8$ V, $V_{DS} = 0$ V			±10	μΑ	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = -250 μA	-0.4	-0.6	-1.5	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25°C		2.5		mV/°C	
	Static Drain to Source On Resistance	V _{GS} = -4.5 V, I _D = -4.0 A		45	65		
r _{DS(on)}		$V_{GS} = -2.5 \text{ V}, I_D = -3.2 \text{ A}$		55	100	mΩ	
'DS(on)		$V_{GS} = -4.5 V, I_D = -4.0 A, T_J = 125^{\circ}C$		62	90	- 11152	
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -4.0 A$		15		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			700	925	pF	
C _{oss}	Output Capacitance	$V_{DS} = -10 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1 MHz		110	150	pF	
C _{rss}	Reverse Transfer Capacitance			95	145	pF	
	Characteristics						
t _{d(on)}	Turn-On Delay Time			6	12	ns	
t _r	Rise Time	V_{DD} = -10 V, I _D = -1 A, V _{GS} = -4.5 V, R _{GEN} = 6 Ω		7	14	ns	
t _{d(off)}	Turn-Off Delay Time			120	190	ns	
t _f	Fall Time			52	83	ns	
Q _g	Total Gate Charge			11	16	nC	
Q _{gs}	Gate to Source Charge	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -4 \text{ A}$ $V_{GS} =4.5 \text{ V}$		1.1		nC	
Q _{ad}	Gate to Drain "Miller" Charge	VGS+.0 V		3.0		nC	


I _S	Maximum Continuous Drain-Source Diode F	Forward Current			-1.3	А
V _{SD}	Source-Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = -1.3 A$	(Note 2)	-0.7	-1.2	V


Notes:

1: R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 78 °C/W when mounted on a 1 in² pad of 2 oz copper. b. 156°C/W when mounted on a minimum pad of 2 oz copper.

2: Pulse Test: Pulse Width<300 us, Duty Cycle<2.0%.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative