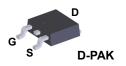


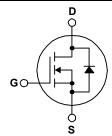
ON Semiconductor®

FDD5N50U

N-Channel UniFETTM Ultra FRFETTM MOSFET 500 V, 3 A, 2.0 Ω

Features


- $R_{DS(on)} = 1.65 \Omega (Typ.) @ V_{GS} = 10 V, I_D = 1.5 A$
- Low Gate Charge (Typ. 11 nC)
- Low C_{rss} (Typ. 5 pF)
- 100% Avalanche Tested
- · RoHS Compliant


Applications

- LCD/LED/PDP TV
- Lighting
- · Uninterruptible Power Supply

Description

UniFETTM MOSFET is ON Semiconductor's high voltage MOSFET family based on planar stripe and DMOS technology. This MOSFET is tailored to reduce on-state resistance, and to provide better switching performance and higher avalanche energy strength. UniFET Ultra FRFETTM MOSFET has much superior body diode reverse recovery performance. Its t_{rr} is less than 50nsec and the reverse dv/dt immunity is 20V/nsec while normal planar MOSFETs have over 200nsec and 4.5V/nsec respectively. Therefore UniFET Ultra FRFET MOSFET can remove additional component and improve system reliability in certain applications that require performance improvement of the MOSFET's body diode. This device family is suitable for switching power converter applications such as power factor correction (PFC), flat panel display (FPD) TV power, ATX and electronic lamp ballasts.

MOSFET Maximum Ratings $T_C = 25^{\circ}$ C unless otherwise noted.

Symbol		Parameter		FDD5N50UTM-WS	Unit	
V_{DSS}	Drain to Source Voltage	Drain to Source Voltage			V	
V_{GSS}	Gate to Source Voltage			±30	V	
1	Drain Current	- Continuous (T _C = 25°C)		3	Α	
I _D	Diam Current	- Continuous (T _C = 100°C)		1.8		
I _{DM}	Drain Current	- Pulsed (Note 1)	12	Α	
E _{AS}	Single Pulsed Avalanche En	ergy ((Note 2)	275	mJ	
I _{AR}	Avalanche Current		(Note 1)	3	Α	
E _{AR}	Repetitive Avalanche Energy	((Note 1)	4	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns	
Б	Dower Dissipation	$(T_C = 25^{\circ}C)$		40	W	
P_{D}	Power Dissipation	- Derate Above 25°C		0.3	W/°C	
T _J , T _{STG}	Operating and Storage Temp	perature Range		-55 to +150	°C	
T_L	Maximum Lead Temperature	e for Soldering, 1/8" from Case for 5 Second	nds	300	°C	

Thermal Characteristics

Symbol	Parameter	FDD5N50UTM_WS	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case, Max.	1.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	110	C/VV

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FDD5N50UTM-WS	FDD5N50U	DPAK	Tape and Reel	330 mm	16 mm	2500 units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V, T_J = 25^{\circ} C$	500	-	-	V
ΔBV _{DSS} / ΔΤ _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μA, Referenced to 25°C	-	0.6	-	V/°C
	Zara Cata Valtaga Drain Current	V _{DS} = 500 V, V _{GS} = 0 V	-	-	25	^
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = 400 \text{ V}, T_{C} = 125^{\circ}\text{C}$	-	-	250	μΑ
I _{GSS}	Gate to Body Leakage Current	V _{GS} = ±30 V, V _{DS} = 0 V	-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu\text{A}$	3	-	5	V
R _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, I_D = 1.5 \text{ A}$	-	1.65	2.0	Ω
9 _{FS}	Forward Transconductance	$V_{DS} = 20 \text{ V}, I_D = 1.5 \text{ A}$	-	4	-	S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05.V.V 0.V	-	485	650	pF
C _{oss}	Output Capacitance	V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz	-	65	90	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1 1/11/12	-	5	8	pF
Q _{g(tot)}	Total Gate Charge at 10V	V _{DS} = 400 V, I _D = 5 A,	-	11	15	nC
Q_{gs}	Gate to Source Gate Charge	V _{GS} = 10 V	-	3	-	nC
Q_{gd}	Gate to Drain "Miller" Charge	(Note	4) _	5	-	nC

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		-	14	38	ns
t _r		$V_{DD} = 250 \text{ V}, I_D = 5 \text{ A},$	-	21	52	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_G = 25 Ω	-	27	64	ns
t _f	Turn-Off Fall Time	(Note 4)	-	20	50	ns

Drain-Source Diode Characteristics

I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	3	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	12	Α
V _{SD}	Drain to Source Diode Forward Voltage	V _{GS} = 0 V, I _{SD} = 3 A	-	-	1.6	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _{SD} = 5 A,	-	36	-	ns
Q_{rr}	Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	-	33	-	nC

Notes:

- 1: Repetitive rating: pulse width limited by maximum junction temperature.
- 2: L = 61 mH, I_{AS} = 3 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C.
- 3: $I_{SD} \leq 3$ A, di/dt \leq 200 A/ μ s, $V_{DD} \leq$ BV $_{DSS}$, starting T_J = 25°C.
- 4: Essentially independent of operating temperature typical characteristics.

Typical Performance Characteristics

Figure 1. On-Region Characteristics

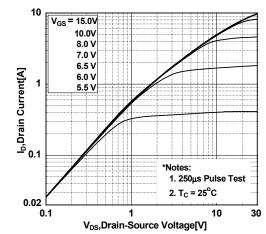
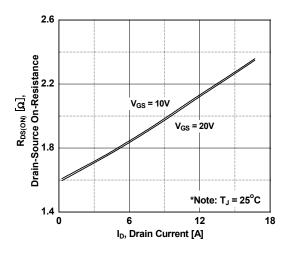



Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage

Figure 5. Capacitance Characteristics

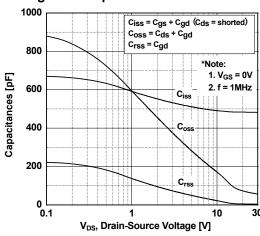


Figure 2. Transfer Characteristics

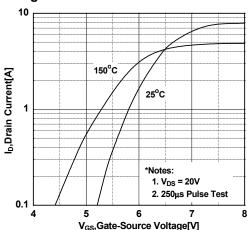


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperature

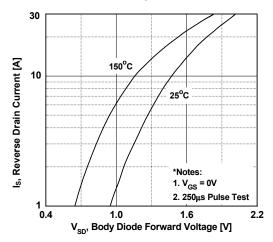
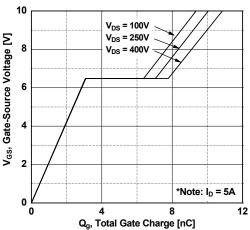



Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

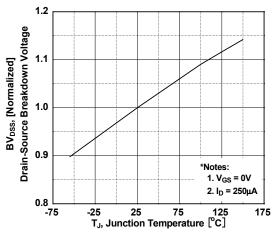


Figure 9. Maximum Drain Current vs. Case Temperature

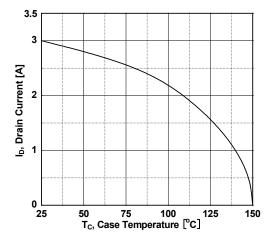


Figure 8. Maximum Safe Operating Area




Figure 10. Transient Thermal Response Curve

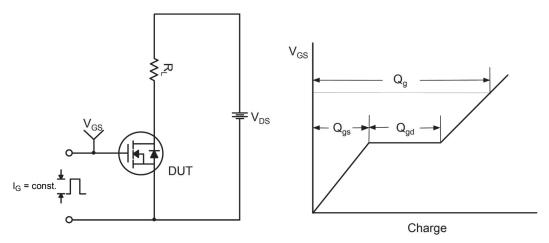


Figure 11. Gate Charge Test Circuit & Waveform

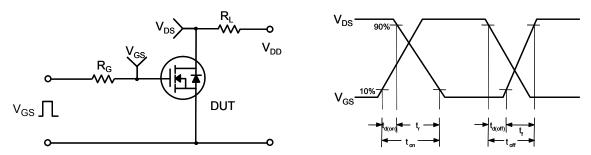


Figure 12. Resistive Switching Test Circuit & Waveforms

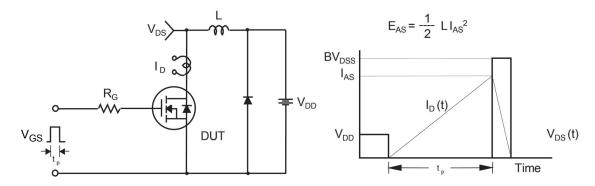


Figure 13. Unclamped Inductive Switching Test Circuit & Waveforms

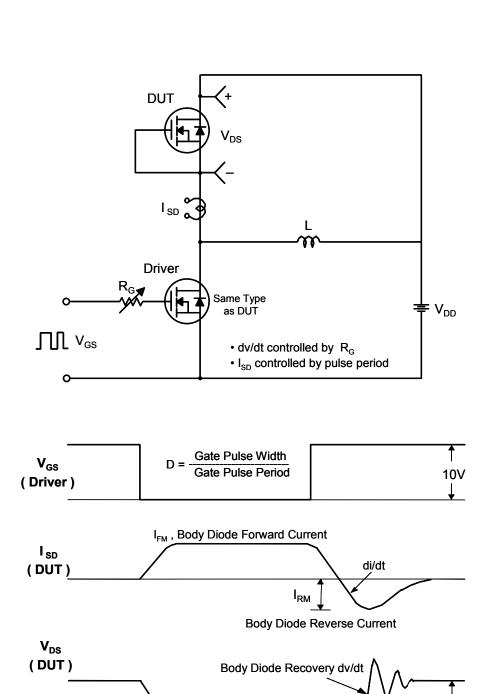


Figure 14. Peak Diode Recovery dv/dt Test Circuit & Waveforms

Body Diode Forward Voltage Drop

Mechanical Dimensions

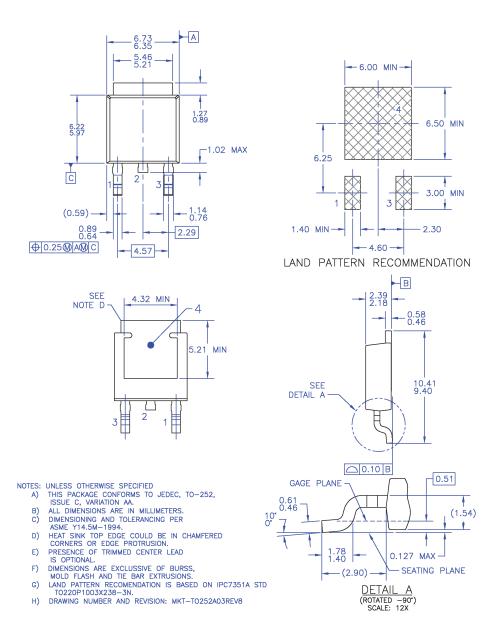


Figure 15. TO252 (D-PAK), Molded, 3-Lead, Option AA&AB

Package drawings are provided as a service to customers considering ON Semiconductor components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a ON Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of ON Semiconductor's worldwide terms and conditions, specif-ically the warranty therein, which covers ON Semiconductor products.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative