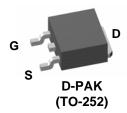


FDD6635

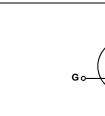

35V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET has been produced using Fairchild Semiconductor's proprietary PowerTrench technology to deliver low Rdson and optimized Bvdss capability to offer superior performance benefit in the applications.

Applications

- Inverter
- Power Supplies



• 59 A, 35 V $R_{DS(ON)} = 10 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 13 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$

- Fast Switching
- RoHS compliant

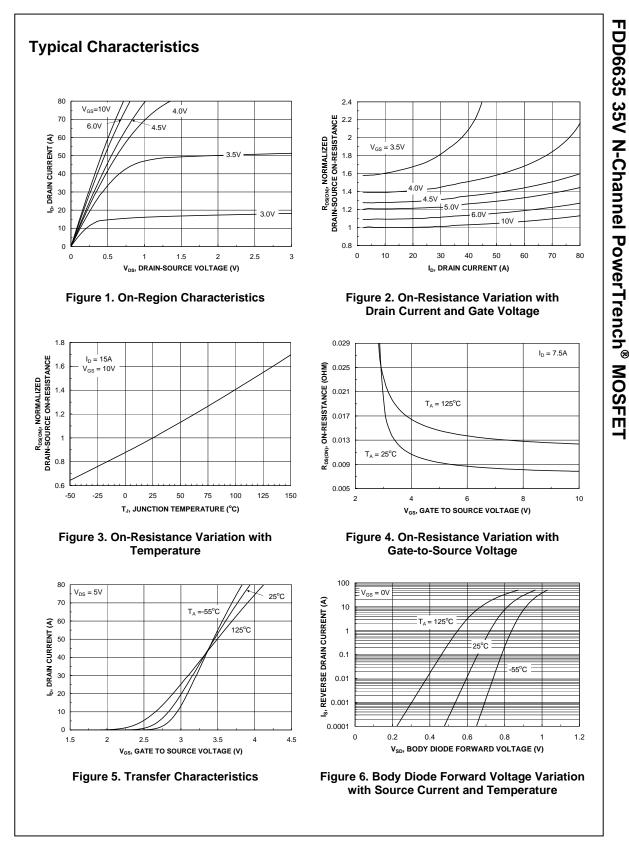
Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

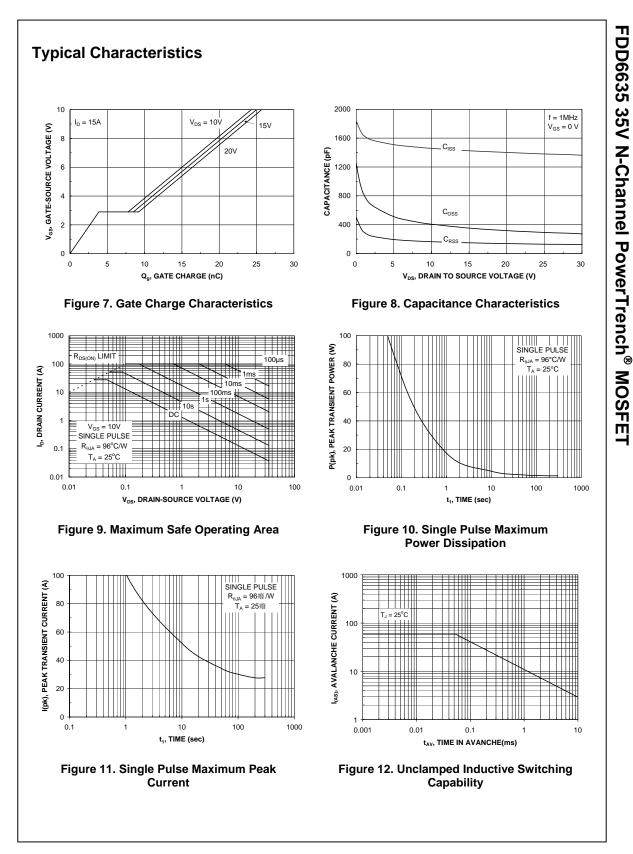
Symbol	Parameter		Ratings		Units		
V _{DSS}	Drain-Source Voltage	in-Source Voltage		35		V	
V _{DS(Avalanche)}	Drain-Source Avalanche Voltage (maximum) (Note 4)				V		
V _{GSS}	Gate-Source Voltage				V		
I _D	Continuous Drain Curre	ent @T _c =25°C	(Note 3)		59	А	
		@T _A =25°C	(Note 1a)		15		
		Pulsed	(Note 1a)		100		
E _{AS}	Single Pulse Avalanche Energy		(Note 5)		113		
PD	Power Dissipation	@T _c =25°C	(Note 3)		55	W	
		@T _A =25°C	(Note 1a)		3.8		
		@T _A =25°C	(Note 1b)		1.6		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-5	°C			
Therma	I Characteristics	5					
R _{eJC}	Thermal Resistance, Junction-to-Case		(Note 1)	2.7		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		nt (Note 1a)	40		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		nt (Note 1b)	96		°C/W	
Packag	e Marking and O	rdering In	formation				
	Marking Dev		Package	Reel Size	Tape width	Quantity	
FDD	6635 FDD6	6635 D-F	PAK (TO-252)	13"	16mm	2500 units	

www.fairchildsemi.com

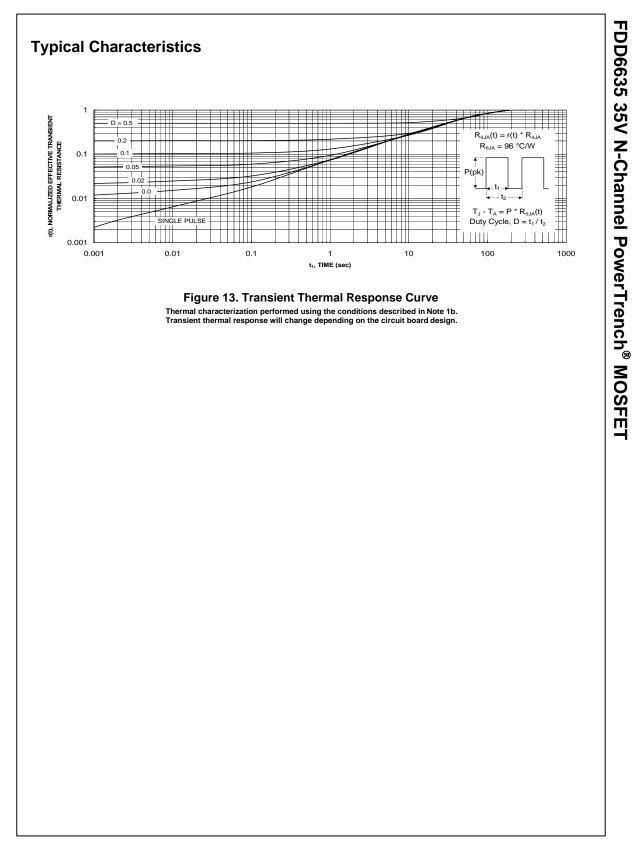
March 2015

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics(Note 2)					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	35			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		32		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 28$ V, $V_{GS} = 0$ V			1	μA
I _{GSS}	Gate-Body Leakage	$V_{GS}=\pm 20~V, \qquad V_{DS}=0~V$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.9	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		-5		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = 10 \ V, & I_D = 15 \ A \\ V_{GS} = 4.5 \ V, & I_D = 13 \ A \\ V_{GS} = 10 \ V, & I_D = 15 \ A, \ T_J = 125^\circ C \end{array} $		8.2 10.2 12.4	10 13 16	mΩ
g fs	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 15 A$		53		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			1400		pF
Coss	Output Capacitance	$V_{\rm DS} = 20 \text{ V}, \qquad V_{\rm GS} = 0 \text{ V},$		317		pF
C _{rss}	Reverse Transfer Capacitance	f = 1.0 MHz		137		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		1.4		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			11	20	ns
tr	Turn–On Rise Time	$V_{DD} = 20 V, I_D = 1 A,$		6	12	ns
t _{d(off)}	Turn–Off Delay Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \ \Omega$		28	45	ns
t _f	Turn–Off Fall Time			14	25	ns
Q _{g (TOT)}	Total Gate Charge, $V_{GS} = 10V$			26	36	nC
Qg	Total Gate Charge, $V_{GS} = 5V$	$V_{DS} = 20 \text{ V}, \text{ I}_{D} = 15 \text{ A}$		13	18	nC
Q _{gs}	Gate-Source Charge]		3.9		nC
Q _{qd}	Gate-Drain Charge]		5.3		nC

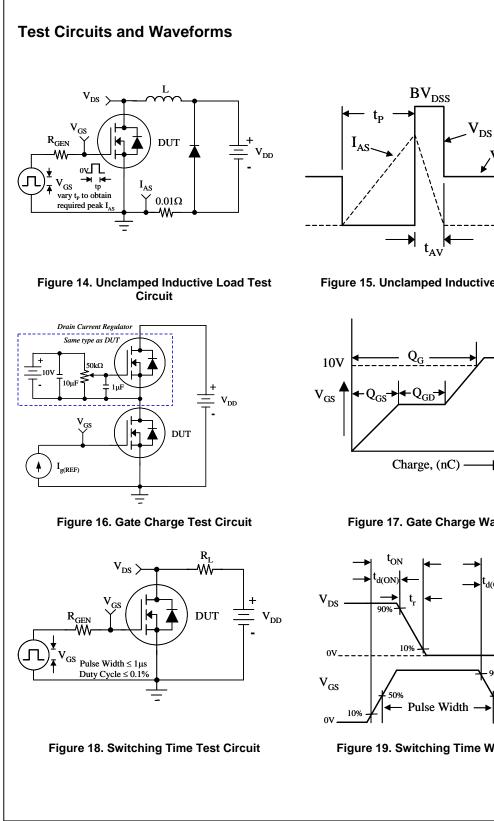

FDD6635 35V N-Channel PowerTrench[®] MOSFET

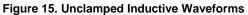

FDD6635 Rev. 1.2

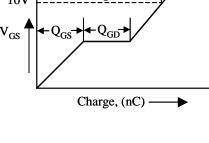
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
	urce Diode Characteristics					
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \ V, I_S = 15 \ A \qquad (\text{Note 2})$		0.8	1.2	V
trr	Diode Reverse Recovery Time	IF = 15 A, diF/dt = 100 A/µs		26		ns
Qrr	Diode Reverse Recovery Charge			16		nC
	of the junction-to-case and case-to-ambient ther R_{eJC} is guaranteed by design while R_{eCA} is deter a) $R_{eJA} = 40^{\circ}$ C/ 1in ² pad of 2	mined by the user's board design. V when mounted on a	b) R _{eJA}		when mour	
Scale 1 : 1 on l	etter size paper					
. Pulse Test: Pul	se Width < 300µs, Duty Cycle < 2.0%					
. Maximum curr	ent is calculated as: $\sqrt{\frac{P_D}{R_{DS(ON)}}}$					
where P _D is m	aximum power dissipation at $T_c = 25^{\circ}C$ and $R_{DS(c)}$	$_{on)}$ is at $T_{J(max)}$ and $V_{GS} = 10V$. Package current	imitation is 2	1A		


FDD6635 35V N-Channel PowerTrench® MOSFET

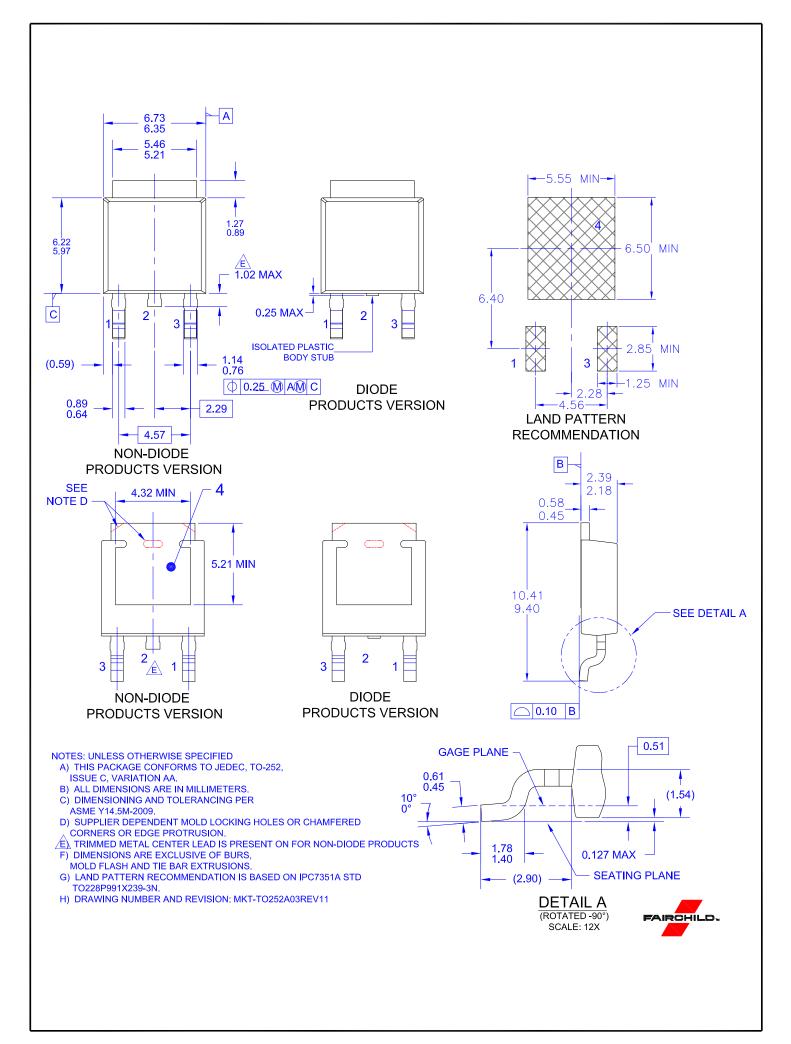
FDD6635 Rev. 1.2




FDD6635 Rev. 1.2


FDD6635 Rev. 1.2

 $V_{\rm DD}$



t_{OFF} d(OFF) n% 90% 50%

Figure 19. Switching Time Waveforms

FDD6635 Rev. 1.2

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC