

-0.010

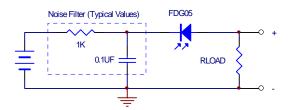
FDG05 Ge Photodiode

--Large Active Area --Low Capacitance

Electrical Characteristics

The Thorlabs FDG05 photodiode is ideal for measuring both pulsed and CW light sources, by converting the optical power to an electrical current. The Ge detector is mounted on a 0.25"x0.35" ceramic wafer package with a 3" 30 AWG anode and cathode. The photodiode anode produces a current, which is a function of the incident light power and the wavelength. The responsivity $\Re(\lambda)$, can be read from Figure 1 to estimate the amount of photocurrent to expect. This can be converted to a voltage by placing a load resistor (R_{LOAD}) from the photodiode anode to the circuit ground. The output voltage is derived as:

Vo = P *
$$\Re(\lambda)$$
 * R_{LOAD}


The bandwidth, f_{BW}, and the rise time response, t_R, are determined from the diode capacitance, C_J, and the load resistance, R_{LOAD}, as shown below. Placing a bias voltage from the photo diode cathode to the circuit ground can lower the photo diode capacitance.

$$f_{BW} = 1/(2\pi * R_{LOAD} * CJ), t_{R} = 0.35/f_{BW}$$

Related Thorlabs Products

FGA10, FGA03PT, FGA03PT/FC, D400FC, PDA255, PDA400, WS02, TM2448

Typical Circuit Diagram

Typical Plots

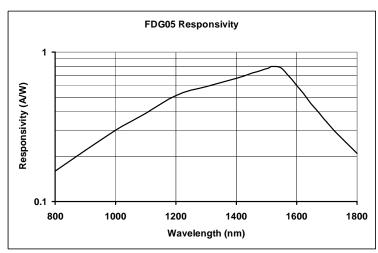


Figure 1: Typical Responsivity curve.

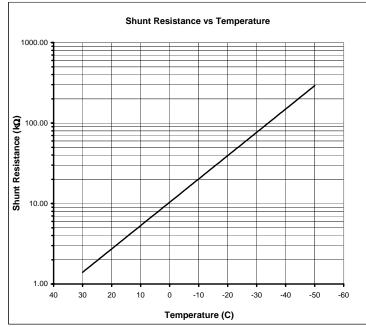


Figure 2: A Typical Shunt Resistance curve for the FDG05 Ge detector. The values above were found using the below equation.

$$\mathbf{R}_{1}(\mathbf{T}_{1}) \coloneqq \mathbf{R}_{0}(\mathbf{T}_{0}) \cdot 2^{\left(\frac{\mathbf{T}_{0} - \mathbf{T}_{1}}{10.4}\right)}$$

2823-S01 Rev D 11/14/01