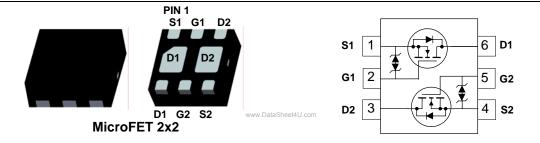


May 2006

FDMA2002NZ


Dual N-Channel PowerTrench® MOSFET

General Description

This device is designed specifically as a single package solution for dual switching requirements in cellular handset and other ultra-portable applications. It features two independent N-Channel MOSFETs with low on-state resistance for minimum conduction losses. The MicroFET 2x2 offers exceptional thermal performance for its physical size and is well suited to linear mode applications.

Features

- 2.9 A, 30 V $R_{DS(ON)} = 123 \text{ m}\Omega$ @ $V_{GS} = 4.5 \text{ V}$ $R_{DS(ON)} = 140 \text{ m}\Omega$ @ $V_{GS} = 3.0 \text{ V}$ $R_{DS(ON)} = 163 \text{ m}\Omega$ @ $V_{GS} = 2.5 \text{ V}$
- Low profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- RoHS Compliant

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units			
V _{DS}	Drain-Source Voltage	30	V			
V _{GS}	Gate-Source Voltage	±12	V			
I _D	Drain Current – Continuous (T _C = 25°C, V _{GS} = 4.5°	2.9				
	- Continuous ($T_C = 25$ °C, $V_{GS} = 2.5$ °C	2.7	Α			
	- Pulsed	10				
P _D	Power Dissipation for Single Operation	(Note 1a)	1.5	10/		
	Power Dissipation for Single Operation	(Note 1b)	0.65	0.65 W		
T _J , T _{STG}	Operating and Storage Temperature		-55 to +150	°C		

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	83 (Single Operation)	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1b)	193 (Single Operation)	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1c)	68 (Dual Operation)	C/VV
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1d)	145 (Dual Operation)	

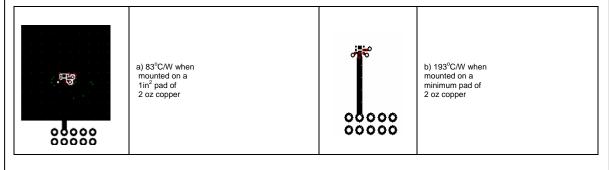
Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
002	FDMA2002NZ	7"	8mm	3000 units

©2006 Fairchild Semiconductor Corporation

FDMA2002NZ Rev B(W)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics			1		
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			1	μА
I _{GSS}	Gate-Body Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±10	μА
On Char	acteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	0.4	1.0	1.5	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C		-3		mV/°C
		$V_{GS} = 4.5V, I_D = 2.9A$		75	123	
		$V_{GS} = 3.0V, I_D = 2.7A$		84	140	mΩ
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 2.5V, I_D = 2.5A$		92	163	
**D3(0II)		$V_{GS} = 4.5V, I_D = 2.9A, T_C = 85^{\circ}C$		95	166	
		$V_{GS} = 3.0V, I_D = 2.7A, T_C = 150^{\circ}C$		138	203	
		$V_{GS} = 2.5V$, $I_D = 2.5A$, $T_C = 150$ °C		150	268	
	Input Capacitance	1	1	190	220	"r
Ciss		$V_{DS} = 15 \text{ V}, \qquad V_{GS} = 0 \text{ V},$				pF
Coss	Output Capacitance	f = 1.0 MHz		30	40	pF
C _{rss}	Reverse Transfer Capacitance			20	30	pF
	g Characteristics (Note 2)	$V_{DD} = 15 \text{ V}, \qquad I_{D} = 1 \text{ A},$	1	6	12	
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$ $V_{GS} = 4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$				ns
t _r	Turn-On Rise Time	VGS = 4.5 V, NGEN = 0.22		8	16	ns
t _{d(off)}	Turn-Off Delay Time	4		12	21	ns
t _f	Turn-Off Fall Time			2	10	ns
Q _g	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 2.9 \text{ A},$ $V_{GS} = 4.5 \text{ V}$		2.4	3.0	nC
Q _{gs}	Gate–Source Charge	V _{GS} = 4.5 V		0.35		nC
Q _{gd}	Gate-Drain Charge			0.75		nC
Drain-Sc	purce Diode Characteristics	_				
Is	Maximum Continuous Drain-Source	e Diode Forward Current			2.9	Α
V_{SD}	Drain–Source Diode Forward Voltage	I _S = 2.0 A I _S = 1.1 A		0.9	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 2.9 A,		10		ns
	Diode Reverse Recovery Charge	$dI_F/dt = 100 A/\mu s$	—	2	1	nC


Electrical Characteristics

T_A = 25°C unless otherwise noted

Notes:

- 1. R_{8JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{8JC} is guaranteed by design while R_{8JA} is determined by the user's board design.
 (a) $R_{0JA} = 83^{\circ}\text{C/W}$ when mounted on a 1in^2 pad of 2 oz copper, 1.5° x 1.5° x 0.062° thick PCB

 - (b) $R_{\theta JA}$ = 193°C/W when mounted on a minimum pad of 2 oz copper
 - (c) $R_{0JA} = 68$ °C/W when mounted on a 1in^2 pad of 2 oz copper, 1.5" x 1.5" x 0.062" thick PCB
 - (d) $R_{\theta JA} = 145$ °C/W when mounted on a minimum pad of 2 oz copper

Scale 1:1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%

Typical Characteristics

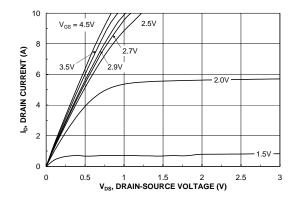
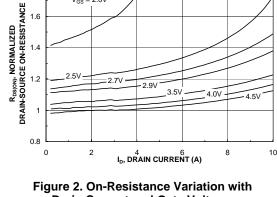



Figure 1. On-Region Characteristics.

 $V_{GS} = 2.0V$

Drain Current and Gate Voltage.

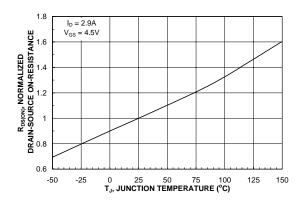


Figure 3. On-Resistance Variation with Temperature.

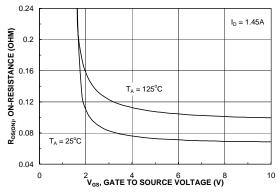


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

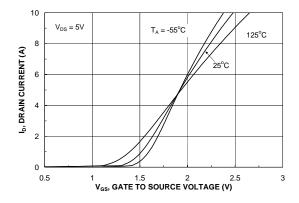


Figure 5. Transfer Characteristics.

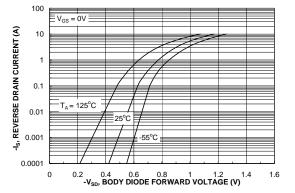
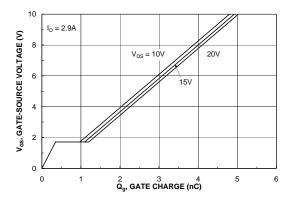



Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

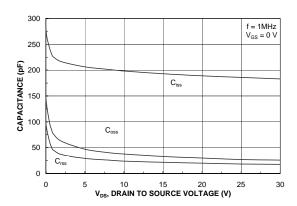



Figure 7. Gate Charge Characteristics.

Figure 8. Capacitance Characteristics.

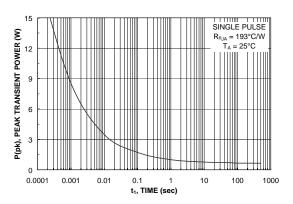


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

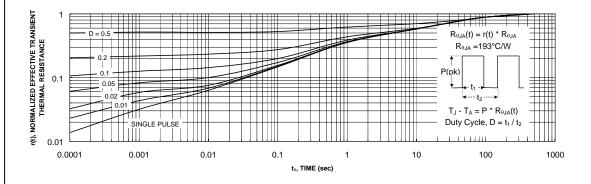
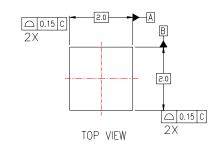
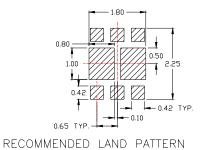
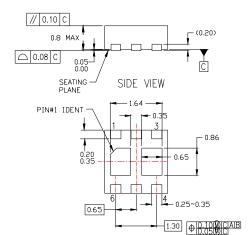





Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1b. Transient thermal response will change depending on the circuit board design.

BOTTOM VIEW

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-229, VARIATION VCCC, DATED 11/2001
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994

MLP06JrevB

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerEdge™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Build it Now™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GTO™	MICROWIRE™	QT Optoelectronics™	TCM™
DOME™	HiSeC™	MSX™	Quiet Series™	TinyLogic [®]
EcoSPARK™	I ² C™	MSXPro™	RapidConfigure™	TINYOPTO™
E ² CMOS™	i-Lo™	OCX TM	RapidConnect™	TruTranslation™
EnSigna™	ImpliedDisconnect™	OCXPro™	μSerDes™	UHC™
FACT™	IntelliMAX™	OPTOLOGIC [®]	ScalarPump™	UniFET™
FACT Quiet Series	ТМ	OPTOPLANAR™	SILENT SWITCHER®	UltraFET [®]
Across the board. Around the world.™		PACMAN™	SMART START™	VCX™
The Power Franchise®		POP™	SPM™	Wire™
Programmable Acti	ve Droop™	Power247™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.