

#### ON Semiconductor®

# FDMA6023PZT

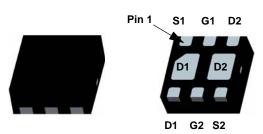
# **Dual P-Channel PowerTrench® MOSFET**

-20 V, -3.6 A, 60 m $\Omega$ 

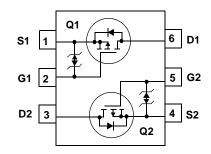
#### **Features**

- Max  $r_{DS(on)}$  = 60 m $\Omega$  at  $V_{GS}$  = -4.5 V,  $I_D$  = -3.6 A
- Max  $r_{DS(on)}$  = 80 m $\Omega$  at  $V_{GS}$  = -2.5 V,  $I_D$  = -3.0 A
- Max  $r_{DS(on)}$  = 110 m $\Omega$  at  $V_{GS}$  = -1.8 V,  $I_D$  = -2.0 A
- Max  $r_{DS(on)} = 170 \text{ m}\Omega$  at  $V_{GS} = -1.5 \text{ V}$ ,  $I_D = -1.0 \text{ A}$
- Low Profile-0.55 mm maximum in the new package MicroFET 2x2 mm Thin
- HBM ESD protection level > 2.4 kV typical (Note 3)
- RoHS Compliant
- Free from halogenated compounds and antimony oxides

## **General Description**


This device is designed specifically as a single package solution for the battery charge switch in cellular handset and other ultraportable applications. It features two independent P-Channel MOSFETs with low on-state resistance for minimum conduction losses. When connected in the typical common source configuration, bi-directional current flow is possible.

The MicroFET 2X2 Thin package offers exceptional thermal performance for it's physical size and is well suited to linear mode applications.


### **Applications**

- Battery protection
- Battery management
- Load switch





MicroFET 2x2



# MOSFET Maximum Ratings T<sub>A</sub> = 25 °C unless otherwise noted

| Symbol                            | Paran                                 | neter                                            |           | Ratings | Units |
|-----------------------------------|---------------------------------------|--------------------------------------------------|-----------|---------|-------|
| $V_{DS}$                          | Drain to Source Voltage               |                                                  |           | -20     | V     |
| $V_{GS}$                          | Gate to Source Voltage                |                                                  |           | ±8      | V     |
|                                   | -Continuous                           | T <sub>A</sub> = 25 °C                           | (Note 1a) | -3.6    | ۸     |
| I <sub>D</sub>                    | -Pulsed                               |                                                  |           | -15     | — A   |
| Б                                 | Power Dissipation                     | T <sub>A</sub> = 25 °C                           | (Note 1a) | 1.4     | W     |
| $P_{D}$                           | Power Dissipation                     | T <sub>A</sub> = 25 °C                           | (Note 1b) | 0.7     | VV    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Temper | Operating and Storage Junction Temperature Range |           |         | °C    |

#### **Thermal Characteristics**

| $R_{\theta JA}$ | Thermal Resistance for Single Operation, Junction to Ambient | (Note 1a) | 86  |      |
|-----------------|--------------------------------------------------------------|-----------|-----|------|
| $R_{\theta JA}$ | Thermal Resistance for Single Operation, Junction to Ambient | (Note 1b) | 173 | °C/W |
| $R_{\theta JA}$ | Thermal Resistance for Dual Operation, Junction to Ambient   | (Note 1c) | 69  | C/VV |
| $R_{\theta JA}$ | Thermal Resistance for Dual Operation, Junction to Ambient   | (Note 1d) | 151 |      |

#### **Package Marking and Ordering Information**

| Device Marking | Device      | Package           | Reel Size | Tape Width | Quantity   |
|----------------|-------------|-------------------|-----------|------------|------------|
| 623            | FDMA6023PZT | MicroFET 2X2 Thin | 7 "       | 8mm        | 3000 units |

# **Electrical Characteristics** $T_J = 25$ °C unless otherwise noted

| Symbol                                 | Parameter                                    | Test Conditions                                  | Min | Тур | Max | Units |  |  |  |  |
|----------------------------------------|----------------------------------------------|--------------------------------------------------|-----|-----|-----|-------|--|--|--|--|
| Off Chara                              | Off Characteristics                          |                                                  |     |     |     |       |  |  |  |  |
| BV <sub>DSS</sub>                      | Drain to Source Breakdown Voltage            | $I_D = -250 \mu A, V_{GS} = 0 V$                 | -20 |     |     | V     |  |  |  |  |
| $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature<br>Coefficient | $I_D$ = -250 $\mu$ A, referenced to 25 °C        |     | -12 |     | mV/°C |  |  |  |  |
| I <sub>DSS</sub>                       | Zero Gate Voltage Drain Current              | V <sub>DS</sub> = -16 V, V <sub>GS</sub> = 0 V   |     |     | -1  | μΑ    |  |  |  |  |
| $I_{GSS}$                              | Gate to Source Leakage Current               | $V_{GS} = \pm 8 \text{ V}, V_{DS} = 0 \text{ V}$ |     |     | ±10 | μΑ    |  |  |  |  |

## On Characteristics

| V <sub>GS(th)</sub>                    | Gate to Source Threshold Voltage                         | $V_{GS} = V_{DS}, I_{D} = -250 \mu A$                                            | -0.4 | -0.5 | -1.5 | V     |
|----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------|------|------|------|-------|
| $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage Temperature Coefficient | $I_D$ = -250 $\mu$ A, referenced to 25 °C                                        |      | -2.7 |      | mV/°C |
|                                        |                                                          | $V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A}$                                  |      | 40   | 60   |       |
|                                        |                                                          | $V_{GS} = -2.5 \text{ V}, I_D = -3.0 \text{ A}$                                  |      | 49   | 80   | - mΩ  |
| r                                      | Drain to Source On Resistance                            | $V_{GS} = -1.8 \text{ V}, I_D = -2.0 \text{ A}$                                  |      | 60   | 110  |       |
| r <sub>DS(on)</sub>                    | Drain to Gource on Resistance                            | $V_{GS} = -1.5 \text{ V}, I_D = -1.0 \text{ A}$                                  |      | 70   | 170  |       |
|                                        |                                                          | $V_{GS} = -4.5 \text{ V}, I_D = -3.6 \text{ A},$<br>$T_J = 125 ^{\circ}\text{C}$ |      | 58   | 72   |       |
| 9 <sub>FS</sub>                        | Forward Transconductance                                 | $V_{DD} = -5 \text{ V}, \ I_{D} = -3.6 \text{ A}$                                |      | 15   |      | S     |

## **Dynamic Characteristics**

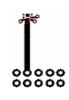
| ( | C <sub>iss</sub> | Input Capacitance            | .,                                                           | 665 | 885 | pF |
|---|------------------|------------------------------|--------------------------------------------------------------|-----|-----|----|
| ( | C <sub>oss</sub> | Output Capacitance           | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$<br>f = 1 MHz | 115 | 155 | pF |
| ( | C <sub>rss</sub> | Reverse Transfer Capacitance | 1 - 1 1911 12                                                | 100 | 150 | pF |

# **Switching Characteristics**

| t <sub>d(on)</sub>  | Turn-On Delay Time            |                                                    | 13  | 23  | ns |
|---------------------|-------------------------------|----------------------------------------------------|-----|-----|----|
| t <sub>r</sub>      | Rise Time                     | V <sub>DD</sub> = -10 V, I <sub>D</sub> = -3.6 A,  | 11  | 20  | ns |
| t <sub>d(off)</sub> | Turn-Off Delay Time           | $V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$      | 75  | 120 | ns |
| t <sub>f</sub>      | Fall Time                     |                                                    | 47  | 75  | ns |
| $Q_g$               | Total Gate Charge             | V <sub>GS</sub> = 0 V to -4.5 V                    | 12  | 17  | nC |
| Q <sub>gs</sub>     | Gate to Source Charge         | $V_{DD} = -10 \text{ V},$ $I_{D} = -3.6 \text{ A}$ | 1.4 |     | nC |
| Q <sub>gd</sub>     | Gate to Drain "Miller" Charge | ID = -3.0 A                                        | 5.2 |     | nC |

#### **Drain-Source Diode Characteristics**

| Is              | Maximum Continuous Drain-Source Diode Forward Current  Source to Drain Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = -1.1 \text{ A}$ (Note 2) |                                                                   |      | -1.1 | Α  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|------|----|
| $V_{SD}$        | Source to Drain Diode Forward Voltage                                                                                                              | $V_{GS} = 0 \text{ V}, I_S = -1.1 \text{ A}$ (Note 2)             | -0.7 | -1.2 | V  |
| t <sub>rr</sub> | Reverse Recovery Time                                                                                                                              | I <sub>E</sub> = -3.6 A, di/dt = 100 A/μs                         | 33   | 53   | ns |
| Q <sub>rr</sub> | Reverse Recovery Charge                                                                                                                            | $I_F = -3.6 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{S}$ | 15   | 27   | nC |


# Electrical Characteristics T<sub>J</sub> = 25 °C unless otherwise noted

#### Notes

- 1.  $R_{\theta,JA}$  is determined with the device mounted on a 1 in<sup>2</sup> oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material.  $R_{\theta,JC}$  is guaranteed by design while  $R_{\theta,JA}$  is determined by the user's board design.
  - (a)  $R_{\theta JA}$ = 86 °C/W when mounted on a 1 in<sup>2</sup> pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For single operation.
  - (b)  $R_{\theta JA}$  = 173 °C/W when mounted on a minimum pad of 2 oz copper. For single operation.
  - (c)  $R_{\theta JA} = 69 \,^{\circ}\text{C/W}$  when mounted on a 1 in<sup>2</sup> pad of 2 oz copper, 1.5 " x 1.5 " x 0.062 " thick PCB. For dual operation.
  - (d)  $R_{\theta JA}$  = 151 °C/W when mounted on a minimum pad of 2 oz copper. For dual operation.



a) 86°C/W when mounted on a 1in² pad of 2 oz copper.



b)173°C/W when mounted on a minimum pad of 2 oz copper.



c) 69°C/W when mounted on a 1in² pad of 2 oz copper.



d)151°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300  $\mu$ s, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

## Typical Characteristics T<sub>J</sub> = 25 °C unless otherwise noted

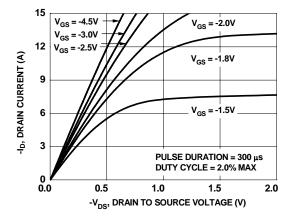



Figure 1. On-Region Characteristics

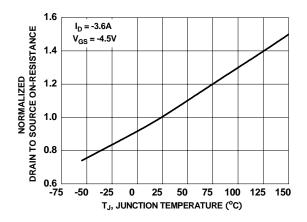



Figure 3. Normalized On-Resistance vs Junction Temperature

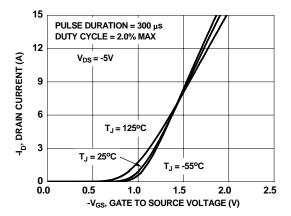



Figure 5. Transfer Characteristics

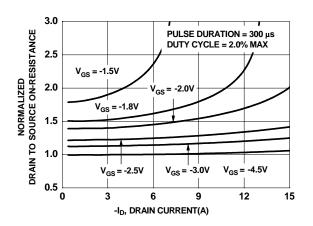



Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage

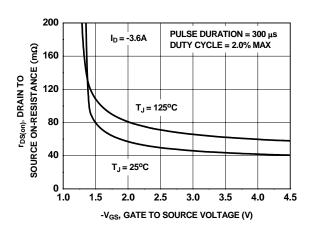



Figure 4. On-Resistance vs Gate to Source Voltage

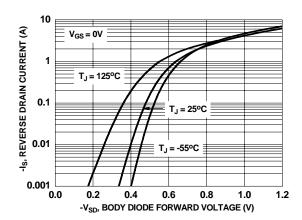



Figure 6. Source to Drain Diode Forward Voltage vs Source Current

# Typical Characteristics T<sub>J</sub> = 25 °C unless otherwise noted

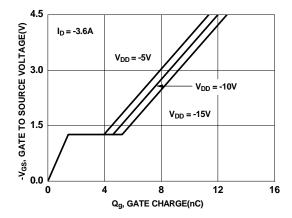
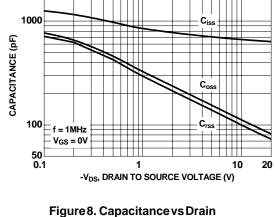




Figure 7. Gate Charge Characteristics



2000

Figure 8. Capacitance vs Drain to Source Voltage

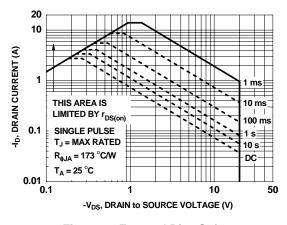



Figure 9. Forward Bias Safe Operation Area

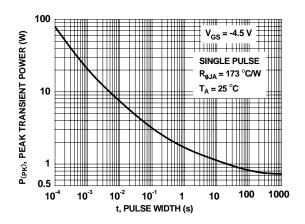



Figure 10. Single Pulse Maximum Power Dissipation

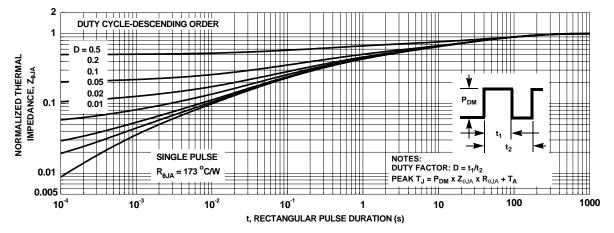
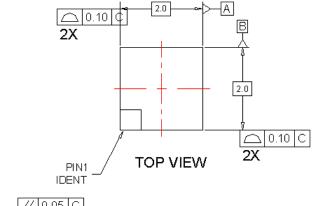
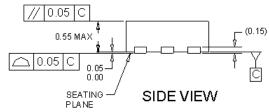
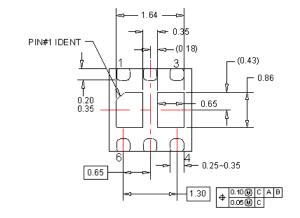
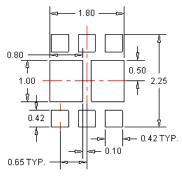






Figure 11. Junction-to-Ambient Transient Thermal Response Curve


# **Dimensional Outline and Pad Layout**







**BOTTOM VIEW** 



RECOMMENDED LAND PATTERN

#### NOTES:

- A. NO JEDEC STANDARD APPLIES
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
- D. DRAWING FILENAME: MKT-UMLP06Brev1.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

#### **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative