

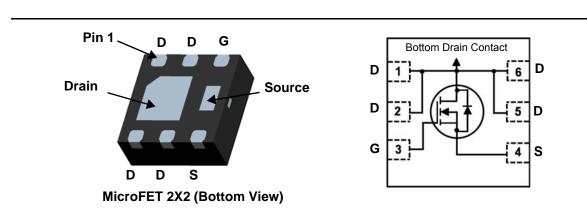
January 2014

FDMA8051L

Single N-Channel PowerTrench[®] MOSFET

40 V, 10 A, 14 mΩ

Features


- Max $r_{DS(on)}$ = 14 m Ω at V_{GS} = 10 V, I_D = 10 A
- Max r_{DS(on)} = 18 mΩ at V_{GS} = 4.5 V, I_D = 8.5 A
- Low Profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- Free from halogenated compounds and antimony oxides
- RoHS Compliant

General Description

This device has been designed to provide maximum efficiency and thermal performance for synchronous buck converters. The low rDS(on) and gate charge provide excellent switching performance.

Application

■ DC – DC Buck Converters

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Param	Ratings	Units			
V _{DS}	Drain to Source Voltage			40	V	
V _{GS}	Gate to Source Voltage		±20	V		
1	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	10	^	
D	-Pulsed		(Note 3)	80	— A	
р	Power Dissipation	T _A = 25 °C	(Note 1a)	2.4	w	
P _D	Power Dissipation	T _A = 25 °C	(Note 1b)	0.9		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

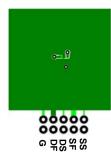
Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	52	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	145	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
051	FDMA8051L	MicroFET 2X2	7 "	8 mm	3000 units

FDMA8051L Single N-Channel PowerTrench[®] MOSFET

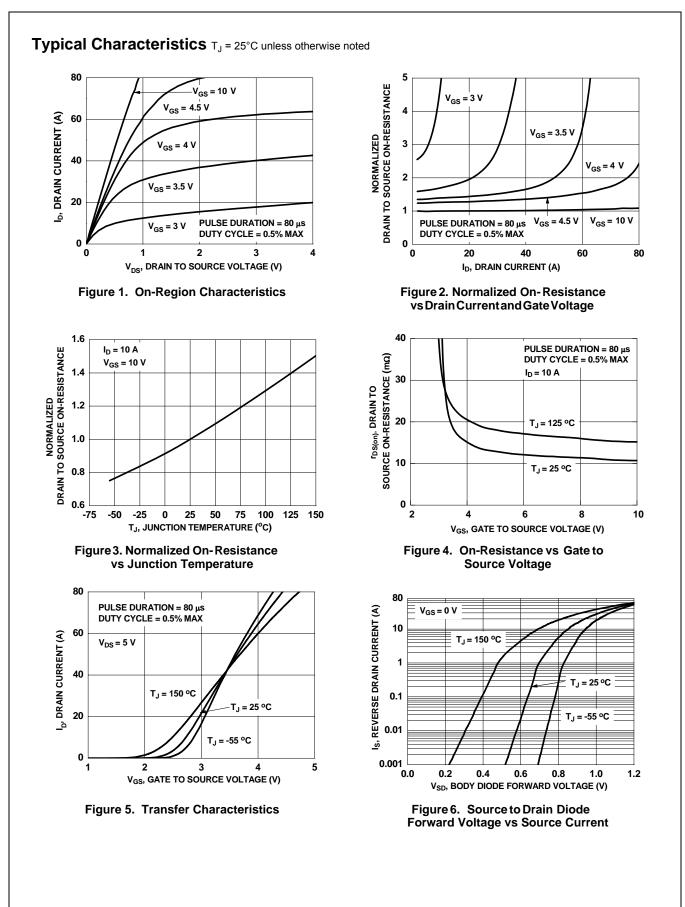

FDMA8051L
Single N
4-Ch
annel PowerTrench

_

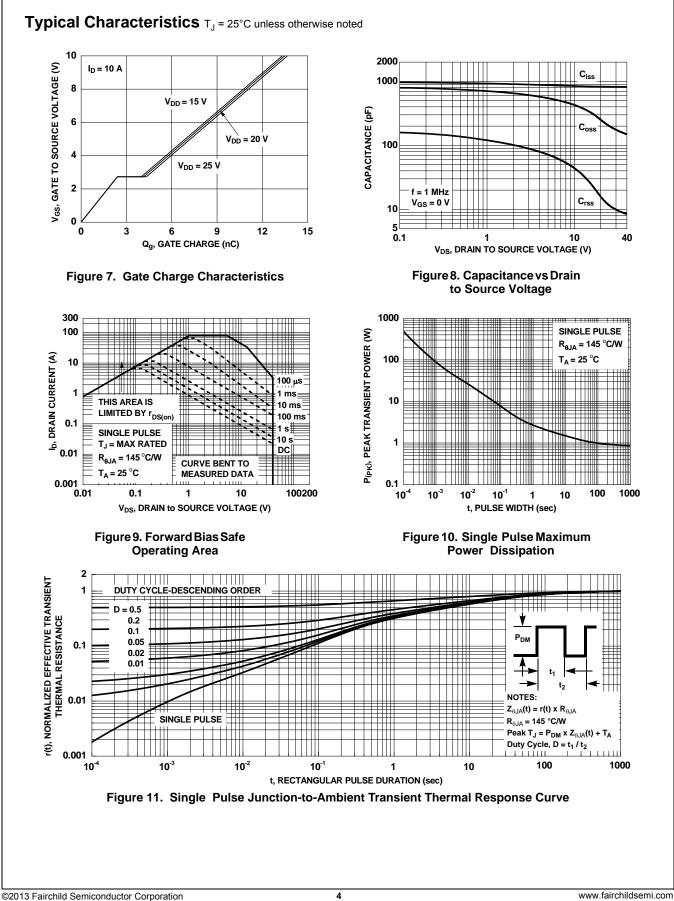
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	40			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 32 V, V _{GS} = 0 V			1	μA
I _{GSS}	Gate to Source Leakage Current	V_{GS} = ±20 V, V_{DS} = 0 V			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250 μA	1.0	1.6	3.0	V
$\Delta V_{GS(th)} \Delta T_J$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 µA, referenced to 25 °C		-5		mV/°C
		V _{GS} = 10 V, I _D = 10 A		11	14	mΩ
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 8.5 A		14	18	
		V _{GS} = 10 V, I _D = 10 A, T _J = 125 °C		15	19	
9 _{FS}	Forward Transconductance	V _{DD} = 5 V, I _D = 10 A		35		S
C _{iss}	Input Capacitance			901	1260	pF
C _{iss}		$V_{pq} = 20 V V_{qq} = 0 V$				
C _{oss}	Output Capacitance	V _{DS} = 20 V, V _{GS} = 0 V, f = 1 MHz		901 251 16	1260 350 25	pF
C _{oss} C _{rss}			0.1	251	350	
C _{oss} C _{rss} R _g Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics		0.1	251 16 0.6	350 25 1.8	pF pF Ω
C _{oss} C _{rss} Rg Switching	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time	f = 1 MHz	0.1	251 16 0.6 6.4	350 25 1.8 13	pF pF Ω ns
C _{oss} C _{rss} Rg Switching t _{d(on)} t _r	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time	f = 1 MHz	0.1	251 16 0.6 6.4 1.8	350 25 1.8 13 10	pF pF Ω ns
C _{oss} C _{rss} Rg Switching t _{d(on)} t _r t _{d(off)}	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time	f = 1 MHz	0.1	251 16 0.6 6.4 1.8 17	350 25 1.8 13 10 31	pF pF Ω ns
C _{oss} C _{rss} R _g Switching t _{d(on)} t _r t _{d(off)} t _f	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$ = 1 \text{ MHz} $ $ = V_{DD} = 20 \text{ V, } \text{I}_{D} = 10 \text{ A,} $ $ = V_{GS} = 10 \text{ V, } \text{R}_{GEN} = 6 \Omega $	0.1	251 16 0.6 6.4 1.8 17 1.8	350 25 1.8 13 10 31 10	pF pF Ω ns ns ns
C _{oss} C _{rss} Rg Switching t _{d(on)} t _r t _{d(off)} t _f Q _{g(TOT)}	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge		0.1	251 16 0.6 6.4 1.8 17 1.8 14	350 25 1.8 13 10 31 10 20	pF pF Ω ns ns ns ns nc
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_d(off) \\ \hline t_f \\ \hline Q_{g(TOT)} \\ \hline Q_{g(TOT)} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$ \begin{array}{c} f = 1 \text{ MHz} \\ \\ \hline \\ V_{DD} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \\ \\ V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega \\ \\ \hline \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \\ V_{GS} = 0 \text{ V to } 4.5 \text{ V} \\ \end{array} $	0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4	350 25 1.8 13 10 31 10 20 9.0	pF pF Ω ns ns ns nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{gs} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge		0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4 2.4	350 25 1.8 13 10 31 10 20 9.0 3.7	pF pF Ω ns ns ns nc nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{gs} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$ \begin{array}{c} f = 1 \text{ MHz} \\ \\ \hline \\ V_{DD} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \\ \\ V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega \\ \\ \hline \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \\ V_{GS} = 0 \text{ V to } 4.5 \text{ V} \\ \end{array} $	0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4	350 25 1.8 13 10 31 10 20 9.0	pF pF Ω ns ns ns nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{switching} \\ \hline \textbf{t}_{d(on)} \\ \hline \textbf{t}_r \\ \hline \textbf{t}_{d(off)} \\ \hline \textbf{t}_f \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{gs} \\ \hline \textbf{Q}_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge	$ \begin{array}{c} f = 1 \text{ MHz} \\ \\ \hline \\ V_{DD} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \\ \\ V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega \\ \\ \hline \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \\ V_{GS} = 0 \text{ V to } 4.5 \text{ V} \\ \end{array} $	0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4 2.4	350 25 1.8 13 10 31 10 20 9.0 3.7	pF pF Ω ns ns ns nc nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{Switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{g(TOT)} \\ \hline \textbf{Q}_{gg} \\ \hline \textbf{Q}_{gd} \\ \hline \textbf{Drain-Sou} \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$ \begin{array}{c} f = 1 \text{ MHz} \\ \\ \hline \\ V_{DD} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \\ \\ V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega \\ \\ \hline \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \\ V_{GS} = 0 \text{ V to } 4.5 \text{ V} \\ \end{array} $	0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4 2.4	350 25 1.8 13 10 31 10 20 9.0 3.7	pF pF Ω ns ns ns nc nC nC
$\begin{array}{c} C_{oss} \\ \hline C_{rss} \\ \hline R_g \\ \hline \textbf{Switching} \\ \hline \textbf{switching} \\ \hline \textbf{t}_{d(on)} \\ \hline t_r \\ \hline t_{d(off)} \\ \hline t_f \\ \hline Q_{g(TOT)} \\ \hline Q_{gTOT} \\ \hline Q_{gs} \\ \hline Q_{gd} \\ \hline \end{array}$	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$ \begin{array}{c} f = 1 \text{ MHz} \\ \\ \hline \\ V_{DD} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \\ \\ V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega \\ \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \\ V_{GS} = 0 \text{ V to } 4.5 \text{ V} \\ \\ I_{D} = 10 \text{ A} \end{array} $	0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4 2.4 1.8	350 25 1.8 13 10 31 10 20 9.0 3.7 2.5	pF pF Ω ns ns ns nc nC nC
$\frac{C_{oss}}{C_{rss}}$ R_{g} Switching $\frac{t_{d(on)}}{t_{r}}$ $\frac{t_{d(off)}}{t_{f}}$ $Q_{g(TOT)}$ $Q_{gTOT)}$ Q_{gs} Q_{gd} Drain-Sou	Output Capacitance Reverse Transfer Capacitance Gate Resistance g Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Charge Gate to Drain "Miller" Charge	$ \begin{array}{c} f = 1 \text{ MHz} \\ \hline \\ V_{DD} = 20 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \\ V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega \\ \hline \\ V_{GS} = 0 \text{ V to } 10 \text{ V} \\ \hline \\ V_{GS} = 0 \text{ V to } 4.5 \text{ V} \\ \text{ I}_{D} = 10 \text{ A} \\ \hline \\ \hline \\ V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2 \text{ A} \\ \hline \end{array} $	0.1	251 16 0.6 6.4 1.8 17 1.8 14 6.4 2.4 1.8 0.7	350 25 1.8 13 10 31 10 20 9.0 3.7 2.5	pF pF Ω ns ns ns nc nC nC V

NOTES:

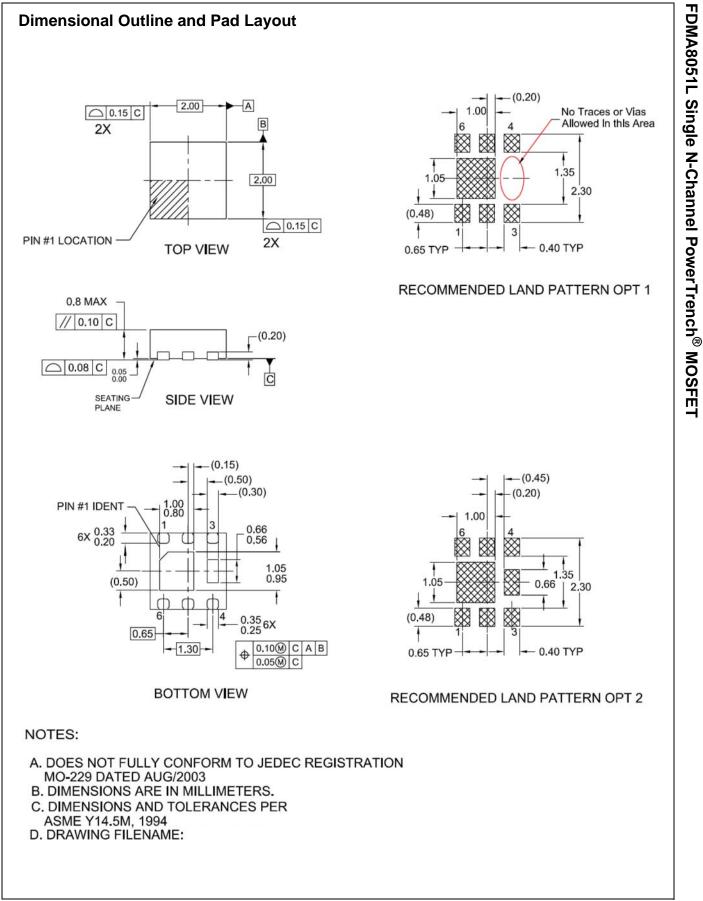
1. R_{θJA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{θJC} is guaranteed by design while R_{θJA} is determined by the user's board design.


a. 52 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 145 °C/W when mounted on a minimum pad of 2 oz copper.


2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Pulsed Id limited by junction temperature, td<=100 μ S, please refer to SOA curve for more details.



©2013 Fairchild Semiconductor Corporation FDMA8051L Rev.C1

3

FDMA8051L Single N-Channel PowerTrench[®] MOSFET

©2013 Fairchild Semiconductor Corporation FDMA8051L Rev.C1

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP [®] *
BitSiC™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSPARK [®]
EfficentMax™
ESBC™

airchild®

Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™

F-PFS™ FRFET® Global Power ResourceSM GreenBridge™ Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better¹ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver[®] OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

 $(1)_{\mathbb{R}}$ PowerTrench[®] PowerXS™ Programmable Active Droop™ QFĔT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®]

Sync-Lock™ SYSTEM^{®*} GENERAL TinyBoost TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* µSerDes™ W UHC® Ultra FRFET™ UniFET™

VCX™ VisualMax™ VoltagePlus™ XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SvncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

2

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 166

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC