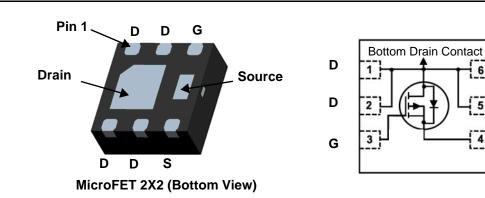


FDMA86265P P-Channel PowerTrench[®] MOSFET -150 V, -1 A, 1.2 Ω

Features

- Max $r_{DS(on)}$ = 1.2 Ω at V_{GS} = -10 V, I_D = -1 A
- Max $r_{DS(on)} = 1.4 \Omega$ at $V_{GS} = -6 V$, $I_D = -0.9 A$
- Low Profile 0.8 mm maximum in the new package MicroFET 2x2 mm
- Very low RDS-on mid voltage P-channel silicon technology optimised for low Qg
- This product is optimised for fast switching applications as well as load switch applications
- 100% UIL tested
- RoHS Compliant



General Description

This P-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been optimized for the on-state resistance and yet maintain superior switching performance.

Applications

- Active Clamp Switch
- Load Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Paramete	Ratings	Units		
V _{DS}	Drain to Source Voltage			-150	V
V _{GS}	Gate to Source Voltage			±25	V
ID	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-1	٨
	-Pulsed	-2	A		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	6	mJ
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.4	w
	Power Dissipation	T _A = 25 °C	(Note 1b)	0.9	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to + 150	°C

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	52	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	145	C/VV

Package Marking and Ordering Information

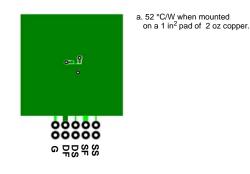
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
265	FDMA86265P	MicroFET 2X2	7 "	12 mm	3000 units

August 2018

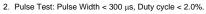
D

D

S

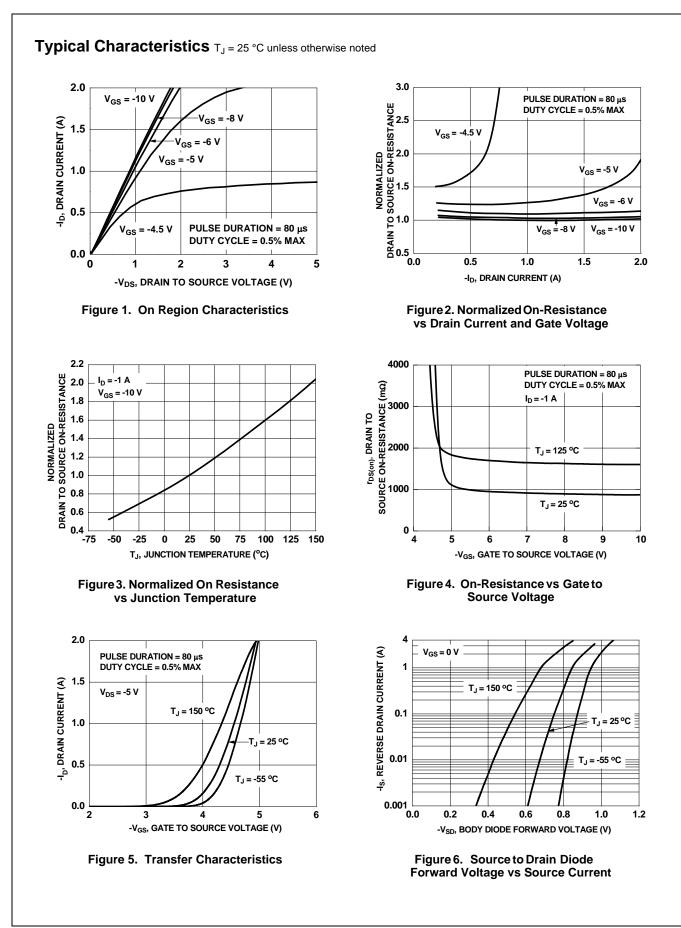

6

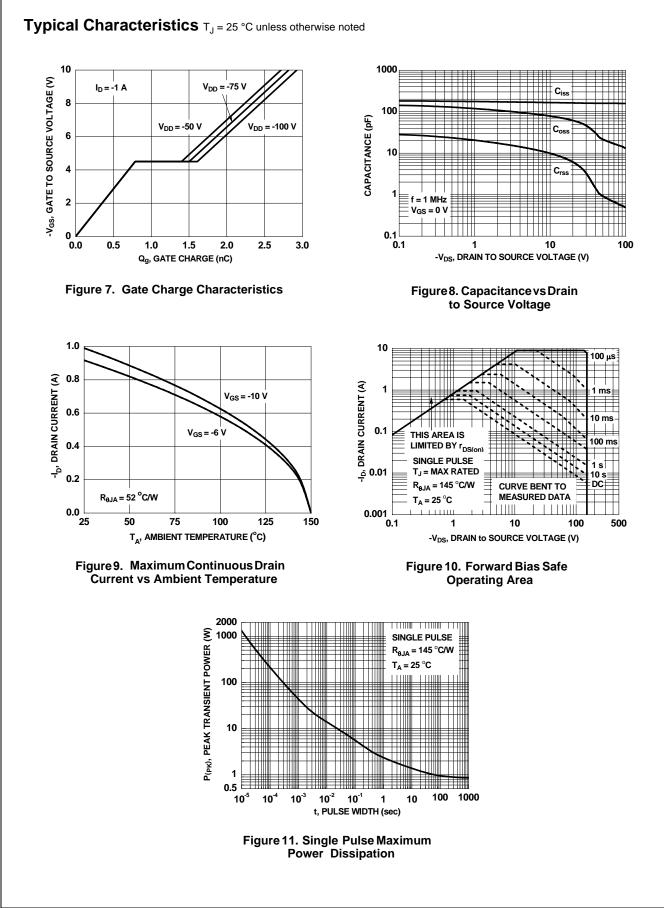
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{D} = -250 \ \mu A, \ V_{GS} = 0 \ V$	-150			V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		-125		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = -120 V, V _{GS} = 0 V			-1	μA	
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA	
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-2	-3.2	-4	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		5		mV/°C	
	Static Drain to Source On Resistance	V _{GS} = -10 V, I _D = -1 A		0.86	1.2		
r _{DS(on)}		$V_{GS} = -6 \text{ V}, \ \text{I}_{D} = -0.9 \text{ A}$		0.95	1.4		
		$V_{GS} = -10 \text{ V}, \ \text{I}_{D} = -1 \text{ A}, \text{T}_{J} = 125 \text{ °C}$		1.53	2.2		
9 _{FS}	Forward Transconductance	$V_{DS} = -10 V, I_{D} = -1 A$		1.9		S	
Dynamic	Characteristics						
C _{iss}	Input Capacitance			158	210	pF	
C _{oss}	Output Capacitance	── V _{DS} = -75 V, V _{GS} = 0 V, f = 1 MHz		16	25	pF	
C _{rss}	Reverse Transfer Capacitance			0.7	5	pF	
R _g	Gate Resistance		0.1	3	7.5	Ω	
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time			5.8	12	ns	
t _r	Rise Time	V _{DD} = -75 V, I _D = -1 A,		2.2	10	ns	
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = -10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		8	16	ns	
t _f	Fall Time			6.4	13	ns	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 V \text{ to } -10 V V_{DD} = -75 V,$		2.8	4	nC	
Q _{gs}	Total Gate Charge	I _D = -1 A		0.8		nC	
Q _{gd}	Gate to Drain "Miller" Charge			0.7		nC	


V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = -1 A	(Note 2)	-0.87	-1.3	V
t _{rr}	Reverse Recovery Time	I _E = -1 A, di/dt = 100 A/μs		50	80	ns
Q _{rr}	Reverse Recovery Charge	$F = -1 A, u/u = 100 A/\mu s$		78	124	nC

NOTES:

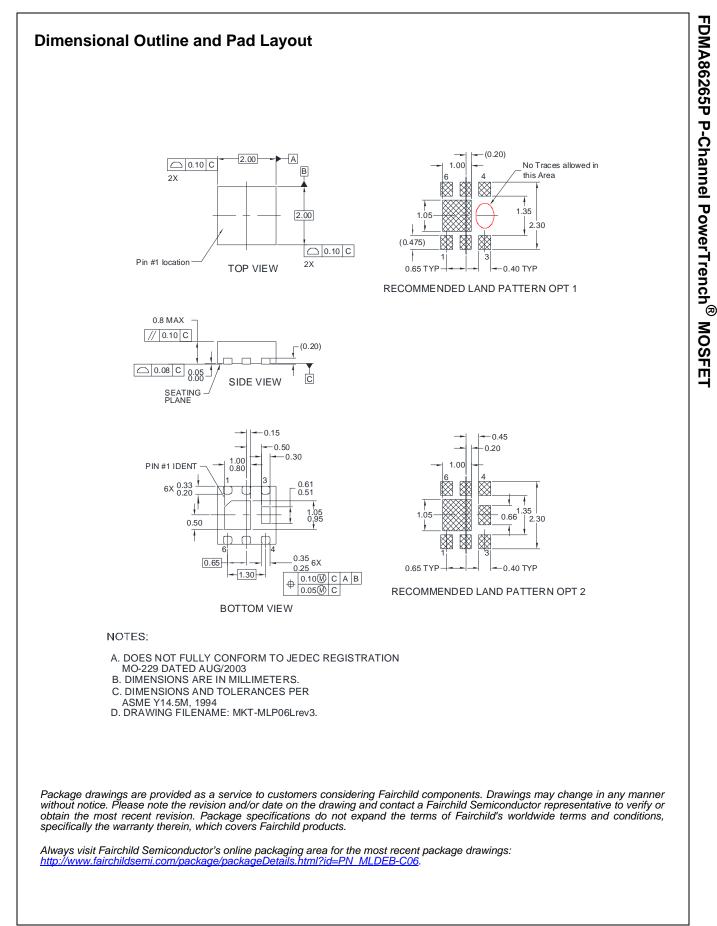
1. R_{0,1}% is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,1}C is guaranteed by design while R_{0CA} is determined by the user's board design.


b. 145 °C/W when mounted on a minimum pad of 2 oz copper.




```
3. Starting T_J = 25 °C; P-ch: L =3 mH, I_{AS} = -2 A, V_{DD} = -150 V, V_{GS} = -10 V.
```

0000 52 27 28


G

FDMA86265P P-Channel PowerTrench[®] MOSFET

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support: Order Literature: http://www.onsemi.com/orderlit Phone: 421 33 790 2910

For additional information, please contact your local

Sales Representative