

FDMB2307NZ

October 2011

Dual Common Drain N-Channel PowerTrench[®] MOSFET 20 V, 9.7 A, 16.5 m Ω

Features

- Max $r_{S1S2(on)}$ = 16.5 m Ω at V_{GS} = 4.5 V, I_D = 8 A
- Max $r_{S1S2(on)}$ = 18 m Ω at V_{GS} = 4.2 V, I_D = 7.4 A
- Max $r_{S1S2(on)} = 21 \text{ m}\Omega$ at $V_{GS} = 3.1 \text{ V}$, $I_D = 7 \text{ A}$
- Max $r_{S1S2(on)} = 24 \text{ m}\Omega$ at $V_{GS} = 2.5 \text{ V}$, $I_D = 6.7 \text{ A}$
- Low Profile 0.8 mm maximum in the new package MicroFET 2x3 mm
- HBM ESD protection level > 2 kV (Note 3)
- RoHS Compliant

General Description

This device is designed specifically as a single package solution for Li-Ion battery pack protection circuit and other ultra-portable applications. It features two common drain N-channel MOSFETs, which enables bidirectional current flow, on Fairchild's advanced PowerTrench[®] process with state of the art MicroFET Leadframe, the FDMB2307NZ minimizes both PCB space and r_{S1S2(on)}.

Application

Li-Ion Battery Pack

MLP 2x3

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{S1S2}	Source1 to Source2 Voltage			20	V
V _{GS}	Gate to Source Voltage		(Note 4)	±12	V
I _{S1S2}	Source1 to Source2 Current -Continuous	T _A = 25°C	(Note 1a)	9.7	^
	-Pulsed			40	Α
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.2	14/
	Power Dissipation	T _A = 25 °C	(Note 1b)	0.8	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

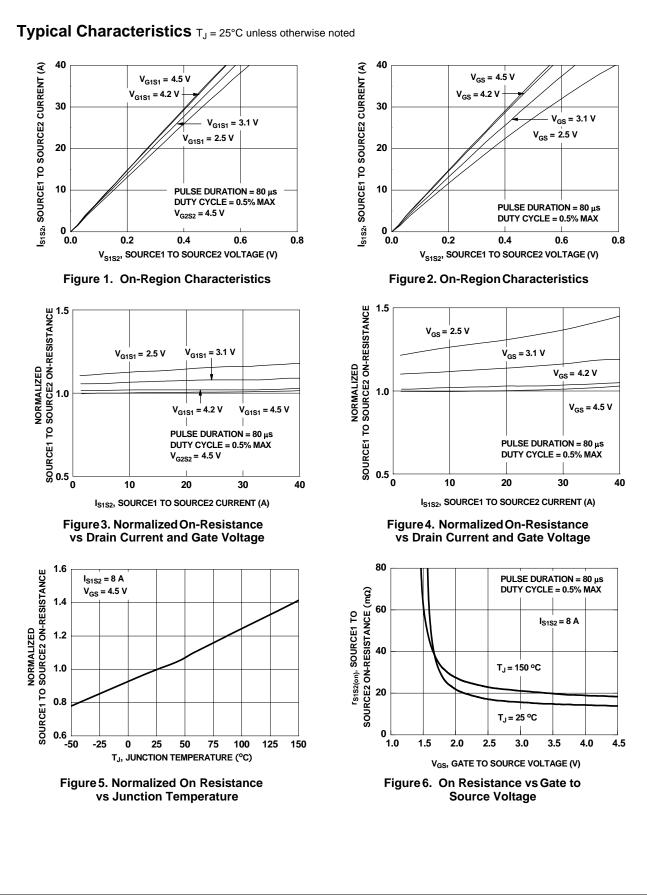
Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient(Dual Operation)	(Note 1a)	57	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient(Dual Operation)	(Note 1b)	161	C/W	

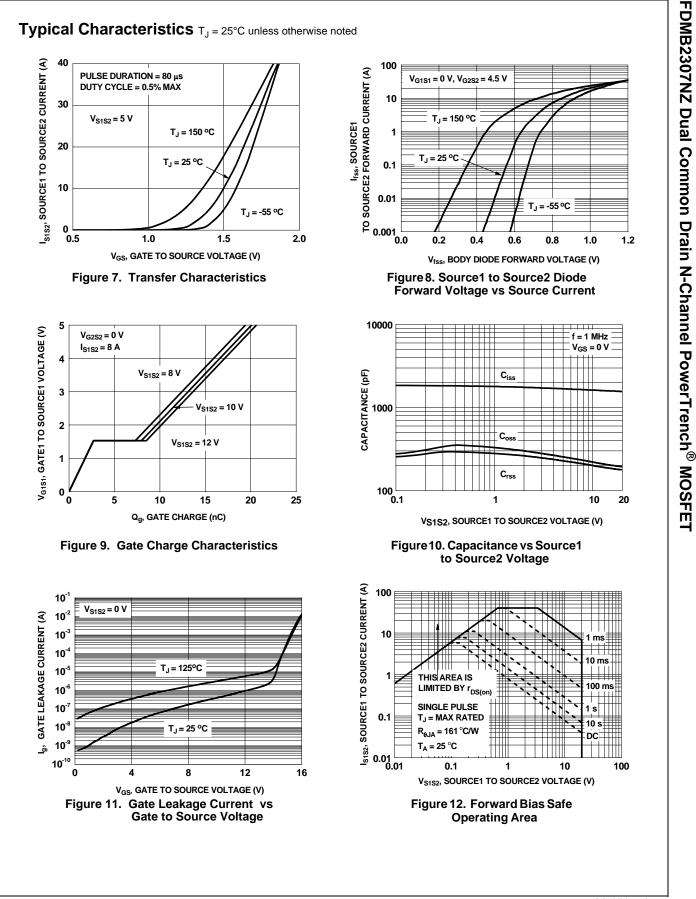
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
307	FDMB2307NZ	MLP 2x3	7"	8 mm	3000 units

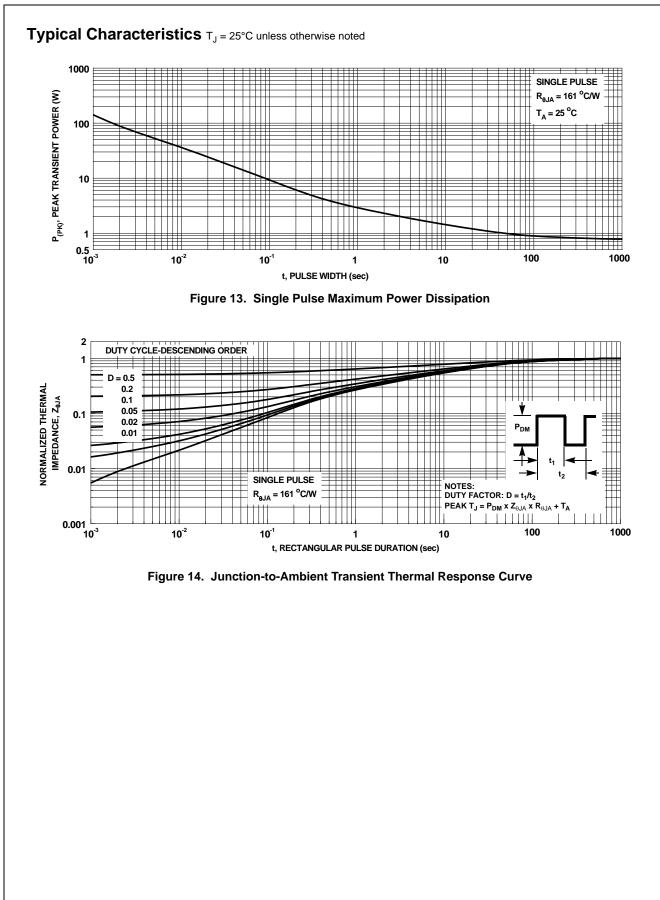
FDMB2307NZ Dual Common Drain N-Channel PowerTrench[®] MOSFET

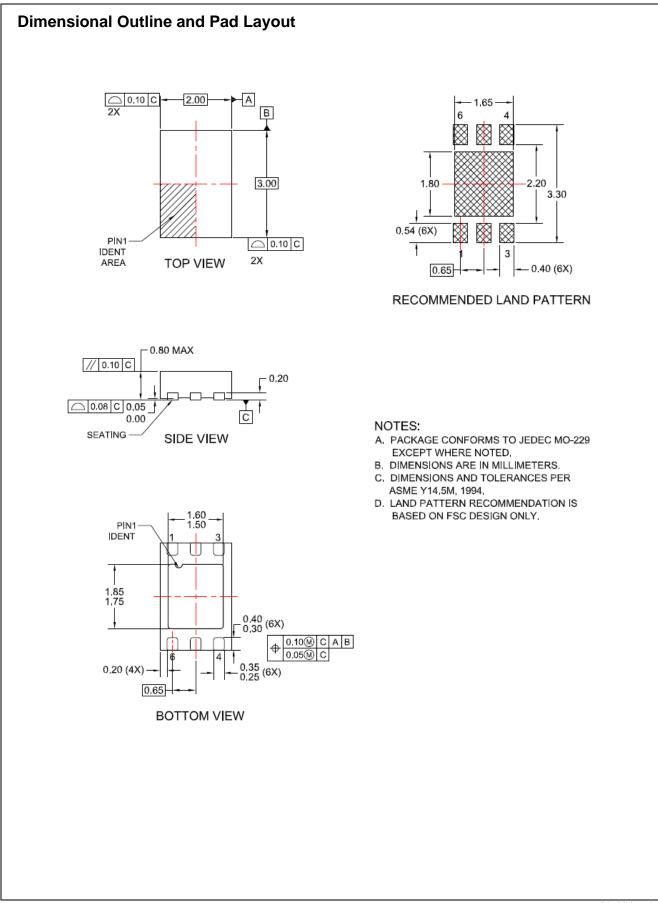

FDMB2307NZ Dual Common Drain N-Channel PowerTrench [®] MOSFET
Common E
Drain N-Cl
Channel
PowerTr
ench [®] N
IOSFET

ristics ro Gate Voltage Source1 to Source2 urrent ite to Source Leakage Current ristics ite to Source Threshold Voltage atic Source1 to Source2 On Resistance rward Transconductance aracteristics out Capacitance utput Capacitance everse Transfer Capacitance maracteristics rn-On Delay Time se Time	$\begin{split} & V_{S1S2} = 16 \text{ V}, \ V_{GS} = 0 \text{ V} \\ & V_{GS} = 12 \text{ V}, \ V_{S1S2} = 0 \text{ V} \\ & V_{GS} = 12 \text{ V}, \ V_{S1S2} = 0 \text{ V} \\ & V_{GS} = 4.2 \text{ V}, \ I_{S1S2} = 250 \mu\nu \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A}, \\ & T_{J} = 125 ^{\circ}\text{C} \\ & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \hline & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \hline & V_{S1S2} = 10 \text{ V}, \ V_{GS} = 0 \text{ V}, \\ & f = 1 \text{ MHz} \\ \hline \end{split}$	A 0.6 10. 11 11. 12 11	5 13.5 14 5 16 2 18	1 10 1.5 16.5 18 21 24 29 29 29 2640 345 320	μΑ μΑ V mΩ S pF pF
rrrent ite to Source Leakage Current ristics ite to Source Threshold Voltage atic Source1 to Source2 On Resistance rward Transconductance aracteristics but Capacitance itput Capacitance	$\begin{split} & V_{GS} = 12 \text{ V}, \text{ V}_{S1S2} = 0 \text{ V} \\ & V_{GS} = 12 \text{ V}, \text{ V}_{S1S2} = 250 \mu\nu \\ & V_{GS} = 4.5 \text{ V}, \text{ I}_{S1S2} = 8 \text{ A} \\ & V_{GS} = 4.2 \text{ V}, \text{ I}_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \text{ I}_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \text{ I}_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \text{ I}_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \text{ I}_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \text{ I}_{S1S2} = 8 \text{ A}, \\ & T_{J} = 125 ^{\circ}\text{C} \\ & V_{S1S2} = 5 \text{ V}, \text{ I}_{S1S2} = 8 \text{ A} \\ \end{split}$	10. 11 11. 12	5 13.5 14 5 16 2 18 20 41 1760 229	10 1.5 16.5 18 21 24 29 29 29 2640 345	μΑ V mΩ S PF pF
ristics te to Source Threshold Voltage atic Source1 to Source2 On Resistance rward Transconductance aracteristics but Capacitance itput Capacitance everse Transfer Capacitance haracteristics rn-On Delay Time	$\begin{split} & V_{GS} = V_{S1S2}, \ I_{S1S2} = 250 \ \mu \nu \\ & V_{GS} = 4.5 \ V, \ I_{S1S2} = 8 \ A \\ & V_{GS} = 4.2 \ V, \ I_{S1S2} = 7.4 \ A \\ & V_{GS} = 3.1 \ V, \ I_{S1S2} = 7.4 \ A \\ & V_{GS} = 2.5 \ V, \ I_{S1S2} = 6.7 \ A \\ & V_{GS} = 4.5 \ V, \ I_{S1S2} = 6.7 \ A \\ & V_{GS} = 4.5 \ V, \ I_{S1S2} = 8 \ A, \\ & T_{J} = 125 \ ^{\circ}C \\ & V_{S1S2} = 5 \ V, \ I_{S1S2} = 8 \ A \\ \end{split}$	10. 11 11. 12	5 13.5 14 5 16 2 18 20 41 1760 229	1.5 16.5 18 21 24 29 29 2640 345	V mΩ S pF pF
atic Source Threshold Voltage atic Source1 to Source2 On Resistance rward Transconductance aracteristics but Capacitance atput Capacitance everse Transfer Capacitance maracteristics rn-On Delay Time	$\begin{split} & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ & V_{GS} = 4.2 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A}, \\ & T_{J} = 125 \text{ °C} \\ & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \hline & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \end{split}$	10. 11 11. 12	5 13.5 14 5 16 2 18 20 41 1760 229	16.5 18 21 24 29 2 2 2 2 2 345	mΩ S PF
atic Source Threshold Voltage atic Source1 to Source2 On Resistance rward Transconductance aracteristics but Capacitance atput Capacitance everse Transfer Capacitance maracteristics rn-On Delay Time	$\begin{split} & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ & V_{GS} = 4.2 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A}, \\ & T_{J} = 125 \text{ °C} \\ & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \hline & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \end{split}$	10. 11 11. 12	5 13.5 14 5 16 2 18 20 41 1760 229	16.5 18 21 24 29 2 2 2 2 2 345	mΩ S pF
atic Source1 to Source2 On Resistance rward Transconductance aracteristics out Capacitance typut Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time	$\begin{split} & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ & V_{GS} = 4.2 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A}, \\ & T_{J} = 125 \text{ °C} \\ & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \hline & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \end{split}$	10. 11 11. 12	14 5 16 2 18 20 41 1760 229	18 21 24 29 2 2 2 2 2 345	PF pF
rward Transconductance aracteristics out Capacitance utput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time	$\begin{split} & V_{GS} = 4.2 \text{ V}, \ I_{S1S2} = 7.4 \text{ A} \\ & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A}, \\ & T_J = 125 \text{ °C} \\ & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \end{split}$	11.	5 16 2 18 20 41 1760 229	21 24 29 29 2640 345	PF pF
rward Transconductance aracteristics out Capacitance utput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time	$\begin{split} & V_{GS} = 3.1 \text{ V}, \ I_{S1S2} = 7 \text{ A} \\ & V_{GS} = 2.5 \text{ V}, \ I_{S1S2} = 6.7 \text{ A} \\ & V_{GS} = 4.5 \text{ V}, \ I_{S1S2} = 8 \text{ A}, \\ & T_J = 125 ^{\circ}\text{C} \\ & V_{S1S2} = 5 \text{ V}, \ I_{S1S2} = 8 \text{ A} \\ \end{split}$	12	2 18 20 41 1760 229	24 29 2640 345	PF pF
rward Transconductance aracteristics out Capacitance utput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time	$V_{GS} = 2.5 V, I_{S1S2} = 6.7 A$ $V_{GS} = 4.5 V, I_{S1S2} = 8 A,$ $T_{J} = 125 °C$ $V_{S1S2} = 5 V, I_{S1S2} = 8 A$ $V_{S1S2} = 10 V, V_{GS} = 0 V,$		20 41 1760 229	29 2640 345	PF pF
aracteristics but Capacitance htput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time	$V_{GS} = 4.5 V, I_{S1S2} = 8 A,$ $T_{J} = 125 °C$ $V_{S1S2} = 5 V, I_{S1S2} = 8 A$ $V_{S1S2} = 10 V, V_{GS} = 0 V,$		41 1760 229	2640 345	pF pF
aracteristics but Capacitance htput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time	$V_{S1S2} = 5 V$, $I_{S1S2} = 8 A$ $V_{S1S2} = 10 V$, $V_{GS} = 0 V$,		1760 229	345	pF pF
out Capacitance Itput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time			229	345	pF
out Capacitance Itput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time			229	345	pF
tiput Capacitance everse Transfer Capacitance naracteristics rn-On Delay Time			229	345	pF
naracteristics rn-On Delay Time	- f = 1 MHz		-		
naracteristics rn-On Delay Time			211	320	рг
rn-On Delay Time					
•					
zo Timo			12	22	ns
	$V_{S1S2} = 10 V, I_{S1S2} = 8 A,$		19	34	ns
rn-Off Delay Time	V_{GS} = 4.5 V, R_{GEN} = 6 Ω		32	51	ns
					ns
	$V_{GS} = 0 V$ to 5 V		-	-	nC
0				25	nC
•	I _{S1S2} = 8	3 A			nC
ate to Drain "Miller" Charge			5.3		nC
urce2 Diode Characteristics					
aximum Continuous Source1-Source2 Die				8	Α
urce1 to Source2 Diode Forward Voltage			0.8	1.2	V
a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper		b. 161 °C/W a minim	/ when mounted	d on	termined I
	ximum Continuous Source1-Source2 Did urce1 to Source2 Diode Forward Voltage ith the device mounted on a 1 in ² pad 2 oz copper pad gn. a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper	al Gate Charge $V_{GS} = 0 \vee to 5 \vee$ al Gate Charge $V_{GS} = 0 \vee to 4.5 \vee$ te to Source Charge $I_{S1S2} =$ te to Drain "Miller" Charge $I_{S1S2} =$ urce2 Diode Characteristics ximum Continuous Source1-Source2 Diode Forward Current urce1 to Source2 Diode Forward Voltage $V_{G1S 1} = 0 \vee, V_{G2S2} = 4.5 \vee,$ ith the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 materi a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper	al Gate Charge V _{GS} = 0 V to 5 V al Gate Charge V _{GS} = 0 V to 4.5 V V _{S1S2} = 10 V, V _{S1S2} = 10 V, te to Source Charge V _{S1S2} = 8 A te to Drain "Miller" Charge Image: Charge Characteristics urce2 Diode Characteristics VG1S 1= 0 V, VG2S2= 4.5 V, urce1 to Source2 Diode Forward Voltage VG1S 1= 0 V, VG2S2= 4.5 V, If _{fss} = 8 A (Note 2) with the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R _{0JC} is guarante gn. a. 57 °C/W when mounted on a 1 in ² pad of 2 oz copper a 1 in ² pad of 2 oz copper b. 161 °C/V a minim	al Gate Charge V _{GS} = 0 V to 5 V 20 al Gate Charge V _{GS} = 0 V to 4.5 V V _{S1S2} = 10 V, 18 te to Source Charge 13152 = 8 Å 2.8 te to Drain "Miller" Charge 5.3 Irce2 Diode Characteristics ximum Continuous Source1-Source2 Diode Forward Current urce1 to Source2 Diode Forward Voltage V _{G1S1} = 0 V, V _{G2S2} = 4.5 V, (Note 2) 0.8 ith the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R _{buC} is guaranteed by design w b. 161 °C/W when mounted on a 1 in ² pad of 2 oz copper b. 161 °C/W when mounted on a 1 in ² pad of 2 oz copper	al Gate Charge $V_{GS} = 0 \lor to 5 \lor V_{S1S2} = 10 \lor,$ 20 28 al Gate Charge $V_{GS} = 0 \lor to 4.5 \lor V_{S1S2} = 10 \lor,$ 18 25 te to Source Charge 151S2 = 8 Å 2.8 2.8 te to Drain "Miller" Charge 5.3 5.3 5.3 tree2 Diode Characteristics ximum Continuous Source1-Source2 Diode Forward Current 8 urce1 to Source2 Diode Forward Voltage $V_{G1S 1} = 0 \lor, V_{G2S2} = 4.5 \lor,$ 0.8 1.2 ith the device mounted on a 1 in ² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is de b. 161 "C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 "C/W when mounted on a 1 in ² pad of 2 oz copper a. 57 "C/W when mounted on a 1 in ² pad of 2 oz copper b. 161 "C/W when mounted on a minimum pad of 2 oz copper


3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.

4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.





©2011 Fairchild Semiconductor Corporation FDMB2307NZ Rev.C5

©2011 Fairchild Semiconductor Corporation FDMB2307NZ Rev.C5

SEMICONDUCTOR

DMB2307NZ Dual Common Drain N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC[®] Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™

G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptiHiT™ **OPTOLOGIC**® **OPTOPLANAR[®]** R

Global Power ResourceSM

Green FPS™ e-Series™

FlashWriter[®]

Green FPS™

FPS™

F-PFS™

FRFET®

PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8

bwer p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ UHC®

The Power Franchise[®]

The Right Technology for Your Success™

Ultra FRFET™ UniFET™ VCX™ VisualMax™ XST

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SupreMOS[®]

SyncFET™

Sync-Lock™

GENERAL

SYSTEM[®]

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Dofinition of Torn

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.