July 2015

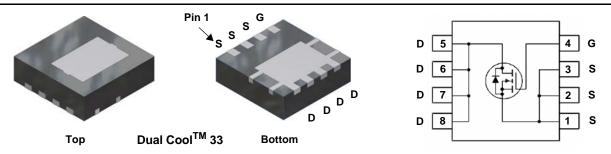
FDMC7660DC N-Channel Dual Cool[™] 33 PowerTrench[®] MOSFET

30 V, 40 A, 2.2 m Ω

FAIRCHILD

Features

- Dual CoolTM Top Side Cooling PQFN package
- Max $r_{DS(on)}$ = 2.2 m Ω at V_{GS} = 10 V, I_D = 22 A
- Max $r_{DS(on)}$ = 3.3 m Ω at V_{GS} = 4.5 V, I_D = 18 A
- High performance technology for extremely low r_{DS(on)}
- SyncFET Schottky Body Diode
- RoHS Compliant



General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process. Advancements in both silicon and Dual CoolTM package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

Applications

- Synchronous Rectifier for DC/DC Converters
- Telecom Secondary Side Rectification
- High End Server/Workstation

MOSFET Maximum Ratings TA= 25°C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
1	Drain Current -Continuous (Package limited)	T _C = 25 °C		40		
	-Continuous (Silicon limited)	T _C = 25 °C		150	A	
D	-Continuous	T _A = 25 °C	(Note 1a)	30	A	
	-Pulsed			200		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	220	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 5)	1.0	V/ns	
D	Power Dissipation	T _C = 25 °C		78	W	
PD	Power Dissipation	T _A = 25 °C	(Note 1a)	3.0		
T _J , T _{STG}	Operating and Storage Junction Temperature R	ange		-55 to + 150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Top Source)	4.3	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.6	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	105	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	12	

Package Marking and Ordering Information

ſ	Device Marking	Device	Package	Reel Size	Tape Width	Quantity
	7660	FDMC7660DC	Dual Cool TM 33	13"	12 mm	3000 units

DMC76
60DC N
-Chann
el Dual (
Cool TM
33 Pow
DMC7660DC N-Channel Dual Cool TM 33 PowerTrench [®] I
h [®] MOS
MOSFET

Т

		$v_{GS} = 10^{-1} v_{1} I_{D} = 22^{-1} I_{1}$		
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 18 A		
		$V_{GS} = 10 \text{ V}, I_D = 22 \text{ A}, T_J = 125^{\circ}\text{C}$		
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 22 A		
Dynami	c Characteristics			
C _{iss}	Input Capacitance			
C _{oss}	Output Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		
R _g	Gate Resistance			
	ng Characteristics			
	Turn-On Delay Time			
t _{d(on)} t _r	Rise Time			
	Turn-Off Delay Time	V_{DD} = 15 V, I _D = 22 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		
t _{d(off)} t _f	Fall Time			
Q _g	Total Gate Charge	V _{GS} = 0 V to 10 V		
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V$ $V_{DD} = 15 V$,		
Q _{gs}	Gate to Source Charge	$I_{\rm D} = 22 \text{ A}$		
Q _{gd}	Gate to Drain "Miller" Charge			
	Source Drain Diade, Ferward Valtage	$V_{GS} = 0 V, I_S = 22 A$ (Note 2)		
V _{SD}	Source-Drain Diode Forward Voltage	$V_{} = 0 V_{} = 10 \Lambda$ (Note 2)		
		$V_{GS} = 0 V, I_S = 1.9 A$ (Note 2)		
V _{SD}	Reverse Recovery Time	$V_{GS} = 0 V, I_S = 1.9 A$ (Note : 		

Electrical Characteristics T_J = 25°C unless otherwise noted

Test Conditions

 $I_D = 250 \ \mu$ A, referenced to 25 °C

 $I_D = 250 \ \mu A$, referenced to 25 °C

 $I_D = 250 \ \mu\text{A}, \ V_{\text{GS}} = 0 \ \text{V}$

 $V_{DS} = 24 V, V_{GS} = 0 V$ $V_{GS} = 20 V, V_{DS} = 0 V$

 $V_{GS}=V_{DS},\,I_{D}=250~\mu A$

 $V_{GS} = 10 V, I_D = 22 A$

Min

30

1.2

Тур

15

2

-7

1.6

2.5

2.2

147

3885

1215

100

0.7

17

6.6

36

5

54

24

13

5.5

0.8

0.7

43

24

Max

1

100

2.5

2.2

3.3

3.3

5170

1620

150

1.5

31

13

58

10

76

34

1.2

1.2

69

38

Units

V

mV/°C

μΑ

nA

V

mV/°C

mΩ

S

pF

pF

pF

Ω

ns

ns

ns

ns

nC

nC

nC

nC

V

ns

nC

Parameter

Gate to Source Leakage Current, Forward

Drain to Source Breakdown Voltage

Breakdown Voltage Temperature

Zero Gate Voltage Drain Current

Gate to Source Threshold Voltage

Gate to Source Threshold Voltage

Temperature Coefficient

Symbol

 BV_{DSS} $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$

I_{DSS}

I_{GSS}

V_{GS(th)} $\frac{\Delta V_{GS(th)}}{\Delta T_J}$

Off Characteristics

On Characteristics

Coefficient

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	4.3	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.6	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	105	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1c)	29	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1d)	40	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1e)	19	00 AM
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1f)	23	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1g)	30	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1h)	79	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	12	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1I)	16	

NOTES:

1. R_{0JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

a. 42 °C/W when mounted on a 1 in² pad of 2 oz copper

b. 105 °C/W when mounted on a minimum pad of 2 oz copper

c. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

d. Still air, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

e. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper

f. Still air, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper

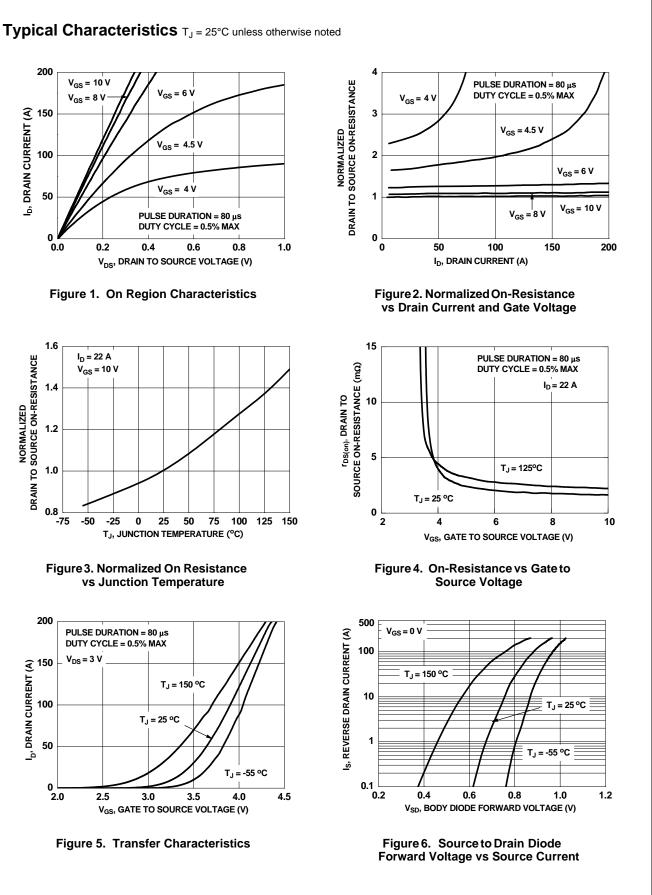
g. 200FPM Airflow, No Heat Sink,1 in² pad of 2 oz copper

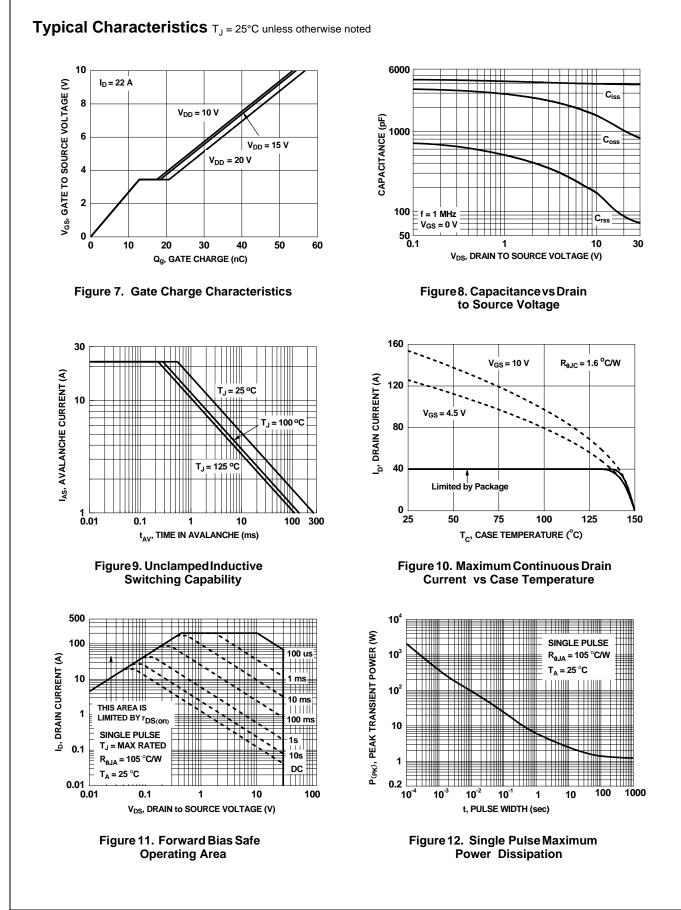
h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper

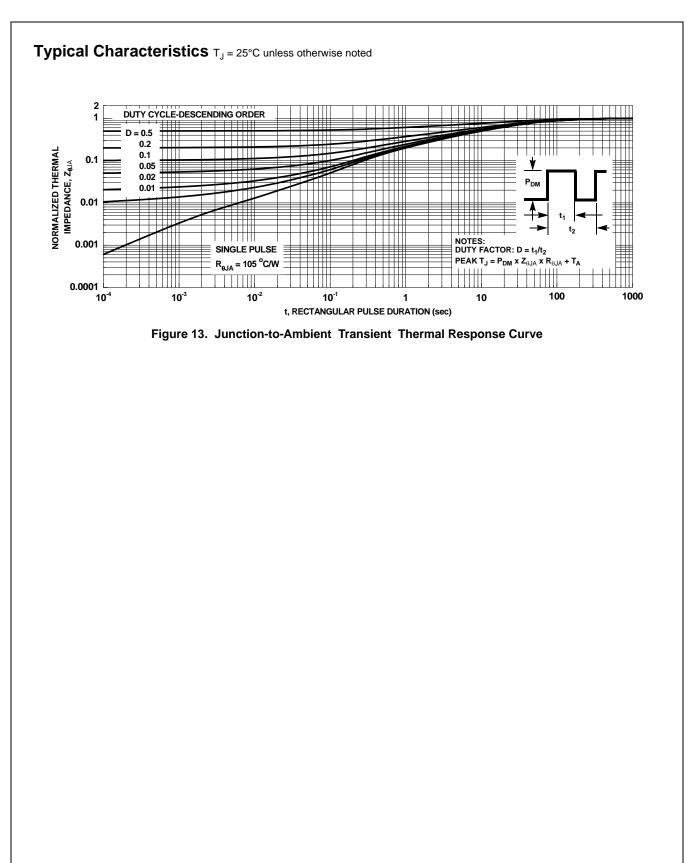
i. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, 1 in² pad of 2 oz copper

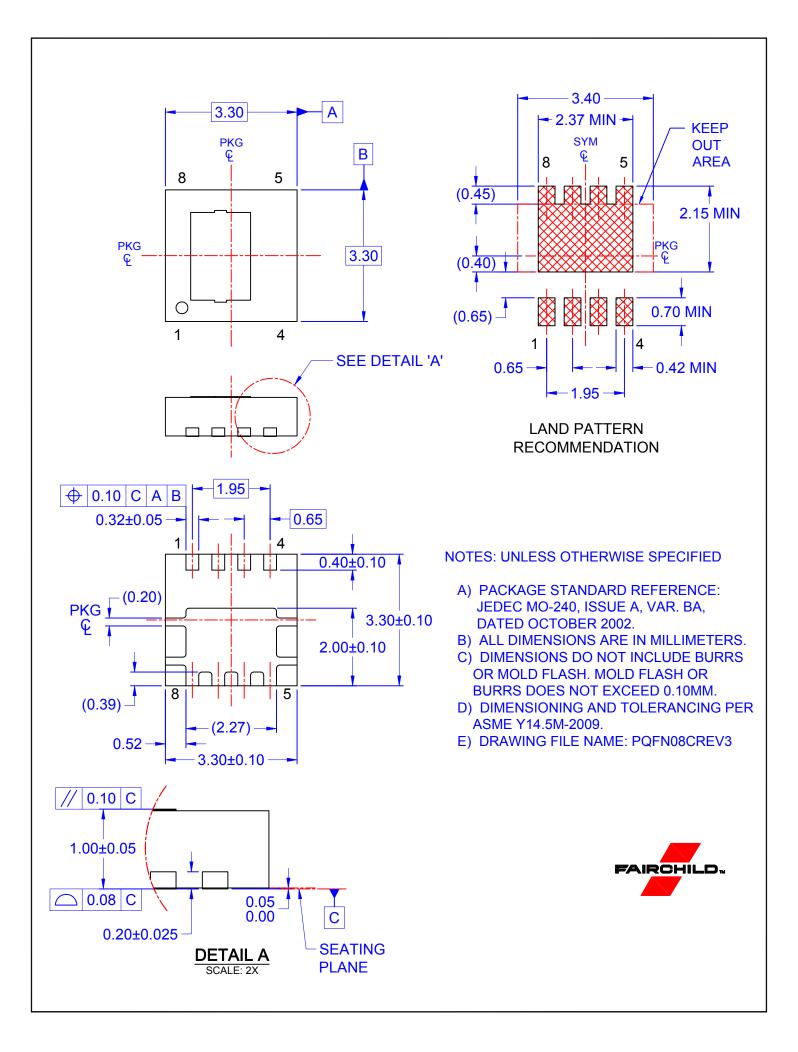
j. 200FPM Airflow, 20.9x10.4x12.7mm Aluminum Heat Sink, minimum pad of 2 oz copper

k. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper


I. 200FPM Airflow, 45.2x41.4x11.7mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper


2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.


3. E_{AS} of 220 mJ is based on starting T_J = 25 $^{\circ}$ C; N-ch: L = 1 mH, I_{AS} = 21 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 33.5 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.

5. $I_{SD} \leq$ 22 A, di/dt \leq 100 A/µs, $V_{DD} \leq BV_{DSS},~$ Starting T_J = 25 °C.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC