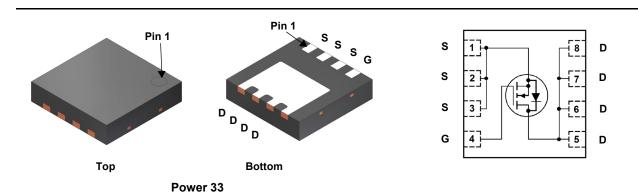


N-Channel PowerTrench[®] MOSFET 30 V, 75 A, 1.3 m Ω

Features


- Max $r_{DS(on)}$ = 1.3 m Ω at V_{GS} = 10 V, I_D = 30 A
- Max $r_{DS(on)}$ = 1.8 m Ω at V_{GS} = 4.5 V, I_D = 25 A
- High performance technology for extremely low r_{DS(on)}
- Termination is Lead-free and RoHS Compliant

General Description

This N-Channel MOSFET is produced using Fairchild Semiconductor's advanced PowerTrench[®] process that has been especially tailored to minimize the on-state resistance. This device is well suited for applications where ultra low $r_{DS(on)}$ is required in small spaces such as High performance VRM, POL and Oring functions.

Applications

- DC DC Buck Converters
- Point of Load
- High Efficiency Load Switch and Low Side Switching
- Oring FET

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter	Ratings	Units			
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Volage		(Note 4)	±20	V	
	Drain Current -Continuous (Package limited)	T _C = 25 °C		75		
	-Continuous (Silicon limited) T _C = 25 °C			166		
D	-Continuous	T _A = 25 °C	(Note 1a)	30	Α	
	-Pulsed			120		
E _{AS}	Single Pulse Avalance Energy		(Note 3)	153	mJ	
D	Power Dissipation	T _C = 25 °C		54	W	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.4		
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	2.3	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a	53	0/10

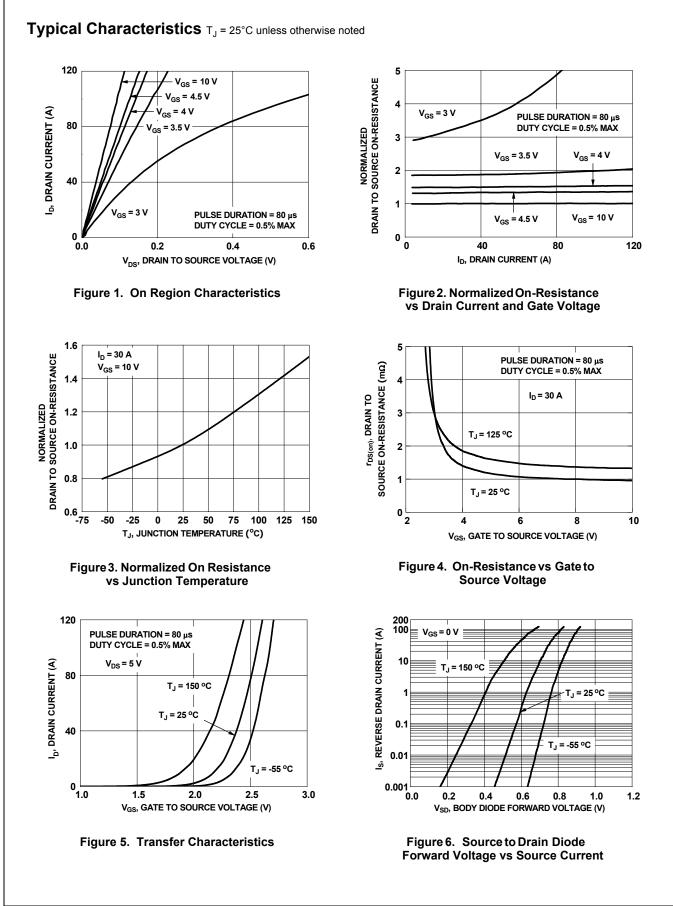
Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMC8010	FDMC8010	Power 33	13 "	12 mm	3000 units

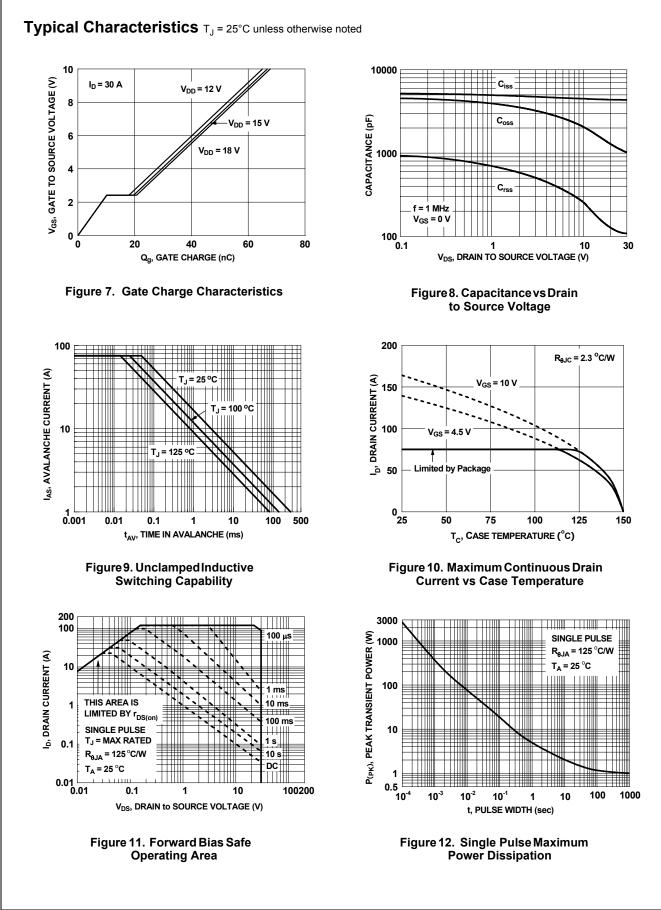
1

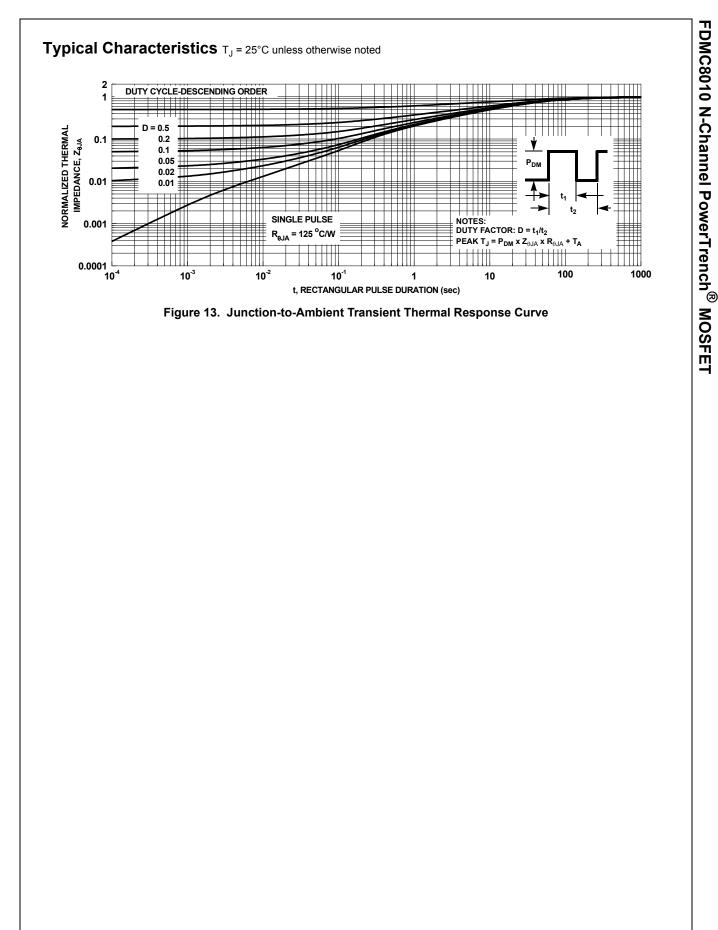
April 2014

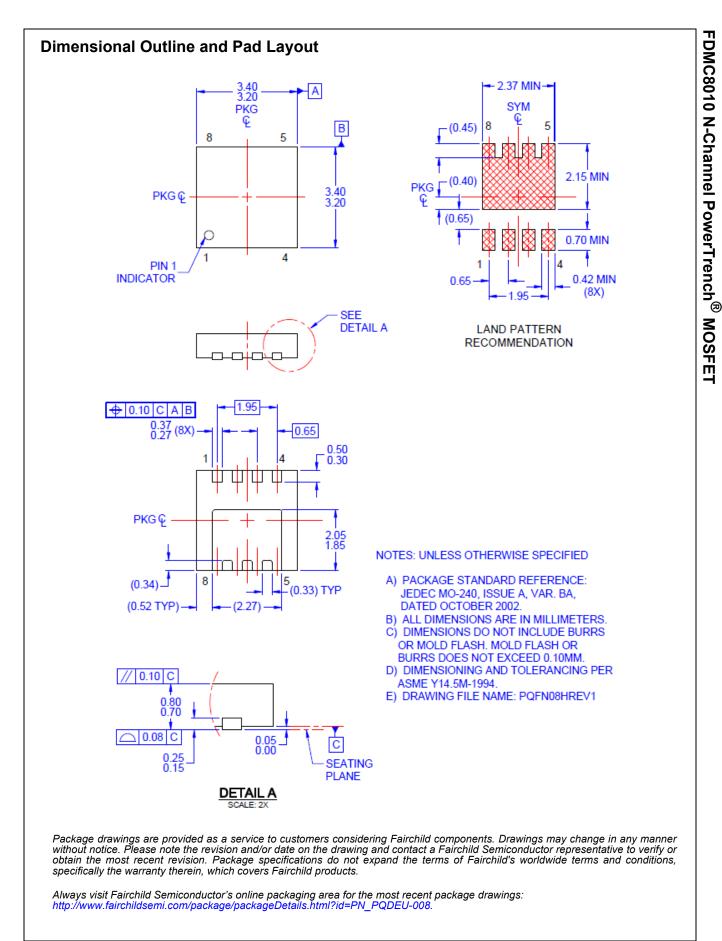
FDMC8010
N-Channel
PowerTrench
[®] MOSFET


Off Chara	Parameter	Test Conditions	Min	Тур	Max	Units
	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	$I_D = 1$ mA, referenced to 25 °C		15		mV/°C
DSS	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μA
GSS	Gate to Source Leakage Current	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	1.2	1.5	2.5	V
$\Delta V_{GS(th)}$	Gate to Source Threshold Voltage	$I_D = 1$ mA, referenced to 25 °C		-5		mV/°C
ΔT_{J}	Temperature Coefficient				1.0	
	Statia Drain to Source On Desistance	$V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}$		0.9	1.3	
^r DS(on)	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 25 \text{ A}$		1.3	1.8	mΩ
~		$V_{GS} = 10 \text{ V}, I_D = 30\text{ A}, T_J = 125 \text{ °C}$		1.3	2	0
9FS	Forward Transconductance	V _{DS} = 5 V, I _D = 30 A		188		S
-	Characteristics					
C _{iss}	Input Capacitance			4405	5860	pF
C _{oss}	Output Capacitance	$v_{DS} = 15 \text{ V}, v_{GS} = 0 \text{ V},$ = f = 1 MHz		1570	2090	pF
C _{rss}	Reverse Transfer Capacitance			167	250	pF
R _g	Gate Resistance			0.5		Ω
Switching	g Characteristics					
d(on)	Turn-On Delay Time			15	27	ns
r	Rise Time	V _{DD} = 15 V, I _D = 30 A,		7.5	15	ns
d(off)	Turn-Off Delay Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		40	64	ns
f	Fall Time			5.3	11	ns
Q _g	Total Gate Charge	V _{GS} = 0 V to 10 V		67	94	nC
<u>g</u> ຊຸ	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$		32	45	nC
Q _{gs}	Gate to Source Charge	$I_{\rm D} = 30 \text{ A}$		10		nC
αgs Q _{gd}	Gate to Drain "Miller" Charge			9.5		nC
-	-			0.0		
Drain-Soເ	urce Diode Characteristics			1		
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2 A$ (Note 2)		0.6	1.2	v
- 30	-	$V_{GS} = 0 V, I_S = 30 A$ (Note 2)		0.7	1.2	
t _{rr}	Reverse Recovery Time	I _F = 30 A, di/dt = 100 A/μs		49	78	ns
Q _{rr}	Reverse Recovery Charge			29	46	nC

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0 %.


3. E_{AS} of 153 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 32 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 47 A.


4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


FDMC8010 N-Channel PowerTrench[®] MOSFET

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePOWER TM CROSSVOLT TM CTL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM \overrightarrow{F} [®] Fairchild Semiconductor [®] FACT Quiet Series TM FACT [®] FastvCore TM FETBench TM FPS TM	F-PFS™ FRFET® Global Power Resource SM Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Loud and Better™ MegaBuck™ MicroPLANAR™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MotionMax™ mWSave® OptoHiT™ OPTOLOGIC® OPTOPLANAR®	Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM [®] STEALTH™ SuperFET [®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperSOT™-8 SupreMOS [®] SyncFET™ Sync-Lock™	Egeneral TinyBuck® TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyWire™ Transic™ TriFault Detect™ TRUECURRENT®* UHC® UItra FRFET™ ViniFET™ VCX™ VisualMax™ VoltagePlus™ XS™ (IIm) Tm
*Trademarks of System General	Corporation, used under license by Fair	child Semiconductor.	

DISCI AIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification Product Status		Definition		
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specification may change in any manner without notice.		
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		