Onsemi

DATA SHEET www.onsemi.com

MOSFET – Dual, N-Channel, **Shielded Gate, POWERTRENCH[®]**

100	V.	39	Α.	10.5	mΩ	
	•,	00	—,			

FDMD86100

General Description

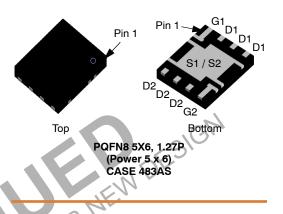
This package integrates two N-Channel devices connected internally in common-source configuration and incorporates Shielded Gate technology. This enables very low package parasitics and optimized thermal path to the common source pad on the bottom. Provides a very small footprint (5 x 6 mm) for higher power density.

Features

- Common Source Configuration to Eliminate PCB Routing
- Large Source Pad on Bottom of Package for Enhanced Thermals
- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 10.5 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 10 \text{ A}$
- Max $r_{DS(on)} = 17.3 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 7.8 \text{ A}$
- Ideal for Flexible Layout in Secondary Side Synchronous Rectification
- 100% UIL tested
- EFORINE • This Device is Pb-Free, Halide Free and is RoHS Compliant.

Applications

- Isolated DC-DC Synchronous Rectifiers
- Common Ground Load Switches


MOSFET MAXIMUM RATINGS (TA = 25°C, unless otherwise noted)

Symbol	Parameter	Ratings	Unit
V _{DS}	Drain to Source Voltage	100	V
V _{GS}	Gate to Source Voltage	±20	V
I _D	Drain Current – Continuous $T_C = 25^{\circ}C$ (Note 5) – Continuous $T_C = 100^{\circ}C$ (Note 5) – Continuous $T_A = 25^{\circ}C$ (Note 1a) – Pulsed (Note 4)	39 24 10 299	A
E _{AS}	Single Pulse Avalanche Energy (Note 3)	337	mJ
P _D	Power Dissipation T _C = 25°C T _A = 25°C (Note 1a)	33 2.2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

_		_	,
Symbol	Parameter	Ratings	Unit
^R _{θJC}	Thermal Resistance, Junction to Case	3.7	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient (Note 1a)	55	

V _{DS}	r _{DS(on)} MAX I _D MA	
100 V	10.5 m Ω @ 10 V	39A
	17.3 m Ω @ 6 V	

MARKING DIAGRAM JURONS

ZXYYKK	
FDMD	
P	


- 86100
- = Assembly Site Code
- = Year Code
- = Weekly Code
- KK = Lot Code

ΖZ

Х

YY

FDMD86100 = Device Code

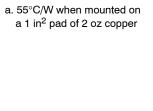
ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

ONTAC

FLECTRICAL CHARACTERISTICS (T. - 25°C unless otherwise noted)

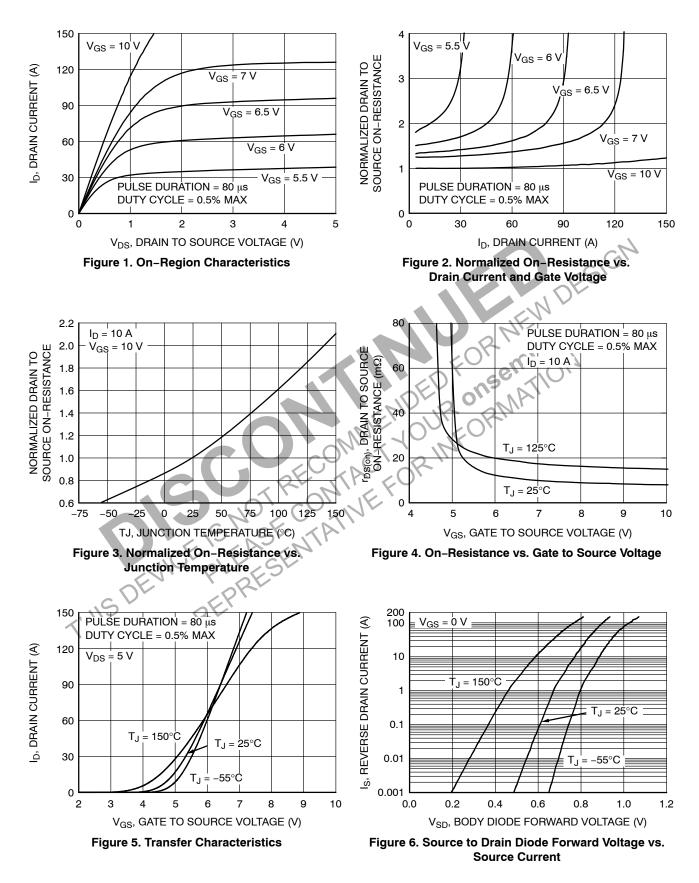

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS		-		-	-
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$	100	-	_	V
$\frac{\Delta \text{BV}_{\text{DSS}}}{\Delta \text{T}_{\text{J}}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 $\mu A,$ referenced to 25°C	-	7	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20$ V, $V_{DS} = 0$ V	-	-	±100	nA
ON CHARA	CTERISTICS		-		-	-
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	2.0	3.0	4.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25°C	-	-10	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 10 A	-	7.8	10.5	mΩ
		V _{GS} = 6 V, I _D = 7.8 A	-	12	17.3	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 10 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$	-	14.5	19.5	
9 FS	Forward Transconductance	V _{DD} = 5 V, I _D = 10 A		26	5	S
DYNAMIC C	CHARACTERISTICS			, Or	P	
C _{iss}	Input Capacitance	$V_{DS} = 50 \text{ V}, V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	-	1469	2060	pF
C _{oss}	Output Capacitance		Z	321	450	pF
C _{rss}	Reverse Transfer Capacitance			12	20	pF
Rg	Gate Resistance	FO	0.1	1,3	3.3	Ω
SWITCHING	G CHARACTERISTICS	EV o	50,1	V		
t _{d(on)}	Turn-On Delay Time	$V_{\text{DD}} = 50 \text{ V}, \text{ I}_{\text{D}} = 10 \text{ A}, \text{ V}_{\text{GS}} = 10 \text{ V}, $	Ar	13	23	ns
t _r	Rise Time	$R_{GEN} = 6 \Omega$	<u> </u>	4.3	10	ns
t _{d(off)}	Turn-Off Delay Time	MAN YOSIFO	-	18	32	ns
t _f	Fall Time		-	4.1	10	ns
Q _{g(TOT)}	Total Gate Charge	V_{GS} = 0 V to 10 V, V_{DD} = 50 V, I_D = 10 A	_	21	30	nC
	Total Gate Charge	V_{GS} = 0 V to 6 V, V_{DD} = 50 V, I_D = 10 A	_	13	18	nC
Q _{gs}	Gate to Source Charge	$V_{DD} = 50 \text{ V}, I_D = 10 \text{ A}$	-	6.6	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		_	4.1	_	nC

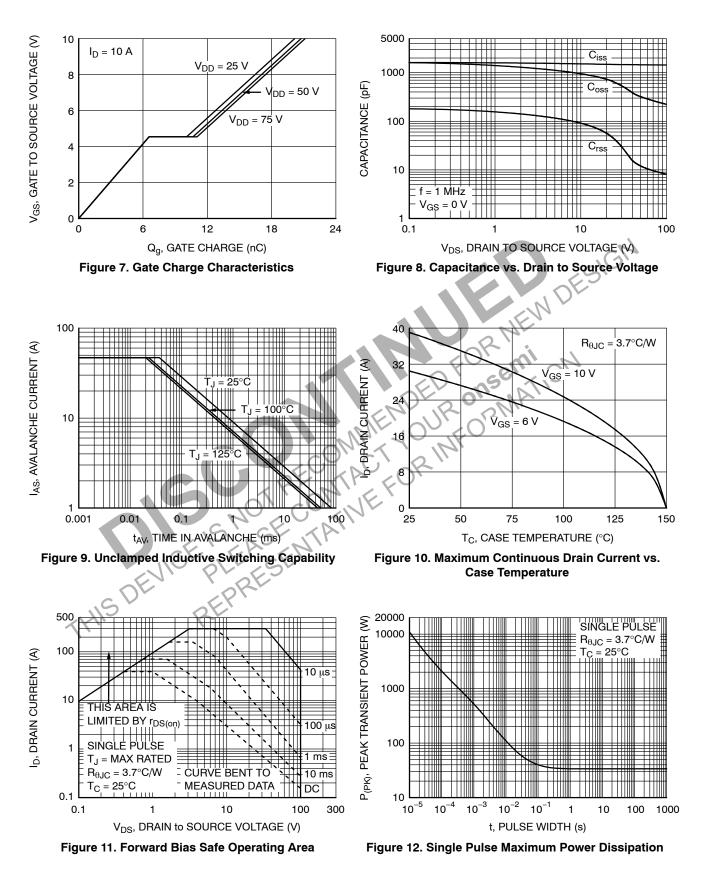

DRAIN-SOURCE CHARACTERISTICS

V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 10 A (Note 2)	-	0.8	1.3	V
	EN PART	V _{GS} = 0 V, I _S = 2 A (Note 2)	-	0.7	1.2	
t _{rr}	Reverse Recovery Time	I _F = 10 A, di/dt = 100 A/μs	-	46	74	ns
Q _{rr}	Reverse Recovery Charge		-	46	74	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

R_{0,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0CA} is determined 1. by the user's board design.




b. 125°C/W when mounted on a minimum pad of 2 oz copper

- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%. 3. E_{AS} of 337 mJ is based on starting T_J = 25°C, L = 3 mH, I_{AS} = 15 A, V_{DD} = 100 V, V_{GS} = 10 V. 100% tested at L = 0.1 mH, I_{AS} = 47 A.
- Pulse Id refers to Figure 11 SOA graph for for details.
 Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

TYPICAL CHARACTERISTICS (T_J = 25°C, unless otherwise noted)

TYPICAL CHARACTERISTICS ($T_J = 25^{\circ}C$, unless otherwise noted) (continued)

TYPICAL CHARACTERISTICS (T_{.1} = 25°C, unless otherwise noted) (continued)

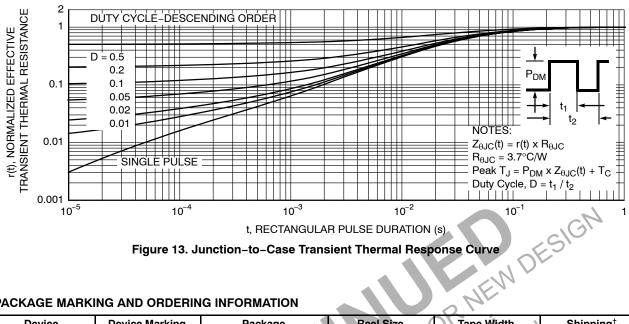
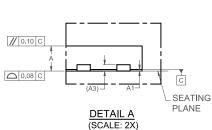


Figure 13. Junction-to-Case Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDMD86100	FDMD86100	PQFN8 5X6, 1.27P (Power 5 x 6) (Pb–Free, Halide Free)	13"		3000 / Tape & Reel
†For information on ta Specifications Broch	ure, BRD8011/D.	ions, including part orientat	Nr 100 Fr	ease refer to our Tape	e and Reel Packaging

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.



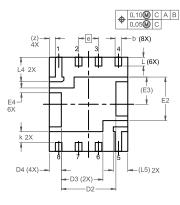
PQFN8 5X6, 1.27P CASE 483AS **ISSUE A**

DATE 17 MAY 2021

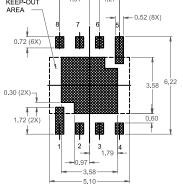
-3.81-⊢1.91-1.27 KEEP-OUT AREA 0.52 (8X) 0.72 (6X) 6.22 3.58 0.30 (2X)-1.72 (2X) ŧ. 3 1.79 2 4 0.9 3 58 5 10

NOTES:

- A) PACKAGE REFERENCE : TO JEDEC REGISTRATION, MO-240B, VARIATION AA.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.
- MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM. D) DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009


 - E) IT IS RECOMMENDED TO HAVE NO TRACES OR VIAS WITHIN THE KEEP-OUT AREA

DIM	MILLIMETERS			
DIW	MIN.	NOM.	MAX.	
А	0.70	0.75	0.80	
A1	0.00	-	0.05	
b	0.37	0.42	0.47	
A3	0.20 REF			
D	4.90	5.00	5.10	
D2	3.38	3.48	3.58	
D3	2.55	2.65	2.75	
D4	0.66	0.76	0.86	
Е	5.90	6.00	6.10	
E2	2.68	2.78	2.88	
E3	1	1.74 REF		
E4	0.25	0.30	0.35	
е	1	1.27 BSC		
k	0.60	0.70	0.80	
L	0.46	0.56	0.66	
L4	1.46	1.56	1.66	
L5	0.82	0.92	1.02	
z	0.39 REF			


SIDE VIEW

SEE

DETAIL A

BOTTOM VIEW

RECOMMENDED LAND PATTERN

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

DOCUMENT NUMBER:	98AON13667G	7G Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION: PQFN8 5X6, 1.27P PAGE 1 OF 1							
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi make ny liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular				

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>