

FDMF6840C — Extra-Small, High-Performance, High-Frequency DrMOS Module

Benefits

- Ultra-Compact 6x6 mm PQFN, 72% Space-Saving Compared to Conventional Discrete Solutions
- Fully Optimized System Efficiency
- Clean Switching Waveforms with Minimal Ringing
- High-Current Handling

Features

- Over 93% Peak-Efficiency
- High-Current Handling: 50 A
- High-Performance PQFN Copper-Clip Pack
- 3-State 3.3 V PWM Input Driver
- Skip-Mode SMOD# (Low-Side Carry Off)
- Thermal Warning Flag for Ov -Temp、atu, Condition
- Driver Output Disal : Function (التراط # Pin)
- Internal Pi^{*} J_F and III-Dr in for SN1CD₃ and DISB# Inj. is □ ecu....
- ON Se iconducto owerTrench® Technology

 wo FE for Jan Voltage Waveforms and
 Reduind in inging
- N.S. miconductor SyncFaT1* (integrated office) i echnology in Love-Sine MOSFET
- Integrated Bootstrap Schottky Diode
- Adaptive Gate Drive Tinting for Shoot-Through Protection
- Under-Voltage Lockout (UVLO)
- Optimized for Switching Frequencies up to 1 MHz
- Low-Profile SMD Package
- ON Semiconductor Green Packaging and RoHS Compliance
- Based on the Intel® 4.0 DrMOS Standard

Description

The XSTM DrMOS family is ON emin inductor's next-generation, fully optimized un recomplet, integrated MOSFET plus driver profer stands on for high-current, high-frequent so through buck. TC-DC applications. The DM roC integrates a driver IC, two power MOSFE. ar. a rotstrap Schottky diode into a then the anclor, ultra-compact 6x6 mm package.

Viti interrated approach, the complete switching we stage optimized with recerc to driver and Minister dynamic performance system inductance, and ower MOSFET Rosion, NOTM DIMOS uses ON Semiconductors high-performance PowerTrench® MOSFET technology, which dramatically reduces switch ringing, eliminating the need for shubber circuit in most back converted applications.

A driver .C with reduced dead times and propagation delays further entrances the performance. A thermal varning function warns of a potential over-temperature situation. The FDMF6840C also incorporates a Skip Mode (SMOD#) for improved light-load efficiency. The IDMF6840C also provides a 3-state 3.3 V PWM input for compatibility with a wide range of PWM controllers.

Applications

- High-Performance Gaming Motherboards
- Compact Blade Servers, V-Core and Non-V-Core DC-DC Converters
- Desktop Computers, V-Core and Non-V-Core DC-DC Converters
- Workstations
- High-Current DC-DC Point-of-Load Converters
- Networking and Telecom Microprocessor Voltage Regulators
- Small Form-Factor Voltage Regulator Modules

Ordering Information

Part Number	Current Rating	Package	Top Mark
FDMF6840C	50 A	40-Lead, Clipbond PQFN DrMOS, 6.0 mm x 6.0 mm Package	FDMF6840C

Typical Application Circuit

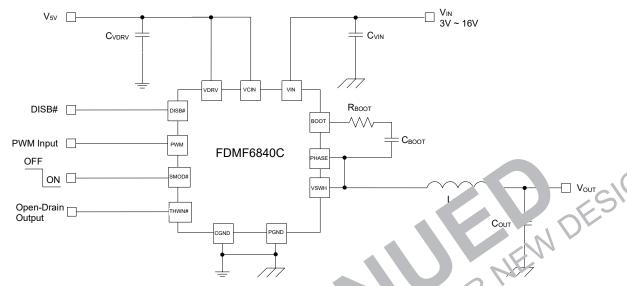


Figure 1. Typical Apply ... cuit

DrMOS Block Diagram

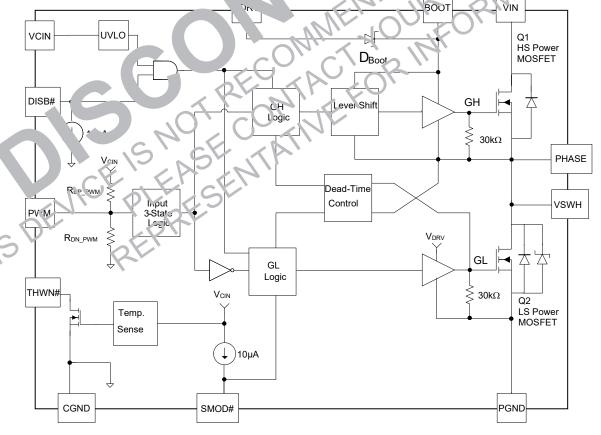


Figure 2. DrMOS Block Diagram

Pin Configuration

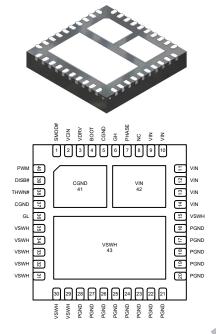
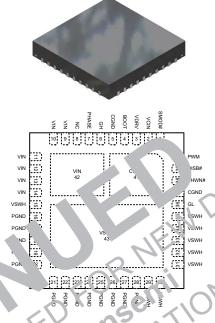



Figure 3. **Bottom View**

Pin Definitions

Pin#	Name	Description		
1	SMOD#	V an SMOD _{th} , the low-side driver is the inverse of the PWM input. When Sh DD#=L N, the low-side driver is peabled. This pin has a 10 μA internal pull-up current source. Do not add a coise filter capacitor.		
2	V	bias supply. Minimum 1 μF ceramic cepacitor is recommended from this pin to CGND.		
	DK.	wer for the gate driver. Minimum 1 μl ² ceramic capacitor is recommended to be connected as close as possible from this bin to CGND.		
	воот	Bootstrap supply input. Provides voltage supply to the high-side MOSFET driver. Connect a bootstrap capacitor from this pin to PHASE.		
5, 37, 41	C'GND	IC ground. Ground return for driver IC.		
6	GH	For manufacturing test only. This pin must float; it must not be connected to any pin.		
G7	PHASE	Swirch node pin for bootstrap capacitor routing. Electrically shorted to VSWH pin.		
8	NC	No connect. The pin is not electrically connected internally, but can be connected to VIN for convenience.		
9 - 14, 42	VIN	Power input. Output stage supply voltage.		
15, 29 - 35, 43	VSWH	Switch node input. Provides return for high-side bootstrapped driver and acts as a sense point for the adaptive shoot-through protection.		
16 – 28	PGND	Power ground. Output stage ground. Source pin of the low-side MOSFET.		
36	GL	For manufacturing test only. This pin must float; it must not be connected to any pin.		
38	THWN#	Thermal warning flag, open collector output. When temperature exceeds the trip limit, the output is pulled LOW. THWN# does not disable the module.		
39	DISB#	Output disable. When LOW, this pin disables the power MOSFET switching (GH and GL are held LOW). This pin has a 10 μ A internal pull-down current source. Do not add a noise filter capacitor.		
40	PWM	PWM signal input. This pin accepts a three-state 3.3 V PWM signal from the controller.		

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{CIN}	Supply Voltage	Referenced to CGND	-0.3	6.0	V
V_{DRV}	Drive Voltage	Referenced to CGND	-0.3	6.0	V
V _{DISB#}	Output Disable	Referenced to CGND	-0.3	6.0	V
V_{PWM}	PWM Signal Input	Referenced to CGND	-0.3	6.0	V
V _{SMOD#}	Skip Mode Input	Referenced to CGND	-0.3	6.0	V
V_{GL}	Low Gate Manufacturing Test Pin	Referenced to CGND	15	<u> </u>	V
V _{THWN} #	Thermal Warning Flag	Referenced to CGND	-0	0	. 12
V _{IN}	Power Input	Referenced to PGND, CGND	0.3	∠5.0	V
\/	Do atatran Cumulu	Referenced to VSWH, PHASE	-0.2	6.0	V
V_{BOOT}	Bootstrap Supply	Referenced to CGND	-0.3	?5.0	V
\/	Llich Cata Manufacturing Tast Dis	Referenced to VSWH, 'HAL	-0:3	6.0	V
V_{GH}	High Gate Manufacturing Test Pin	Referenced to C	-0.3	25.0	V
V _{PHS}	PHASE Reference 1 to 3Gi			25.0	V
	Custale Nada lamut	Ref _ =d to F ND, CGND (DC Only)	6	25 0	V
$V_{\sf SWH}$	Switch Node Input	ference to PG _N D, <20 is	-8.0	28.0	V
\/	Do status Cumbu	Re. rencea .J VDP.V		22.0	V
V _{воот}	Bootstrap Supply	Rei ced to VDRV, <20 ris		25.0	V
I _{THWN#}	THWN# Sink Current	1/2/10/160	-0.1	7.0	mA
	Outrot Course (1)	f _{SW} = 30() itHz, V _{IN} = 12 V, V _O =1.7 V		50	^
$I_{O(AV)}$	Output Curre (1)	1:w=1 MHz, V, N=12 V, Vo = 1.9 V		45	Α
Ө _{ЈРСВ}	Jun J. O.F The nal Resistant	8 11 L CO		2.7	°C/W
TA	An beralure Range	Ola IE	-40	+125	°C
T	aximum / liction Temperature	7/1/2		+150	°C
1 STG	St. rge Temperature Range	TAI	-55	+150	°C
	Flootronesia Diochesta Orbitation	Human Body Model, JESD22-A114	2000		V
r O	Electroscalic Discharge Protection	Charged Device Model, JESD22-C101	2500		V

Note:

1. Ican, is rated using ON Servic inductor's DrMOS evaluation board, at T_A = 25°C, with natural convection cooling. This rating is limited by the peak DrMOS temperature, T_J = 150°C, and varies depending on operating conditions and PCB layout. This rating can be changed with different application settings.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcin	Control Circuit Supply Voltage	4.5	5.0	5.5	V
V _{DRV}	Gate Drive Circuit Supply Voltage	4.5	5.0	5.5	V
VIN	Output Stage Supply Voltage	3.0	12.0	16.0 ⁽²⁾	V

Note:

2. Operating at high V_{IN} can create excessive AC overshoots on the VSWH-to-GND and BOOT-to-GND nodes during MOSFET switching transients. For reliable DrMOS operation, VSWH-to-GND and BOOT-to-GND must remain at or below the Absolute Maximum Ratings shown in the table above. *Refer to the "Application Information" and "PCB Layout Guidelines" sections of this datasheet for additional information*.

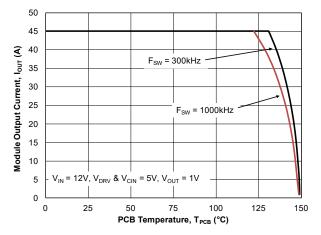
Electrical Characteristics

Typical values are V_{IN} = 12 V, V_{CIN} = 5 V, V_{DRV} = 5 V, and T_A = T_J = +25°C unless otherwise noted.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Basic Oper	ation			•		
ΙQ	Quiescent Current	IQ=IVCIN+IVDRV, PWM=LOW or HIGH or Float			2	mA
V _{UVLO}	UVLO Threshold	V _{CIN} Rising	2.9	3.1	3.3	V
VuvLo_Hys	UVLO Hysteresis			0.4		V
PWM Input	(V _{CIN} = V _{DRV} = 5 V ±10%)					
Rup_pwm	Pull-Up Impedance	V _{PWM} =5 V		26		kΩ
R _{DN_PWM}	Pull-Down Impedance	V _{PWM} =0 V		12		kΩ
V _{IH_PWM}	PWM High Level Voltage		1.81	2.2	2.61	V
V _{TRI_HI}	3-State Upper Threshold		1.84	2.20	2.56	V
V_{TRI_LO}	3-State Lower Threshold		0.70		1.19	V
VIL_PWM	PWM Low Level Voltage		0.62	0.85	1.13	V
t _{D_HOLD-OFF}	3-State Shut-Off Time			160	200	ns
V _{HiZ_PWM}	3-State Open Voltage		1.40	1.60	1.90	V
PWM Input	$(V_{CIN} = V_{DRV} = 5 \text{ V } \pm 5\%)$			- 1		
Rup_pwm	Pull-Up Impedance	V _{PWM} =5 V		?⊍		kΩ
R _{DN_PWM}	Pull-Down Impedance	V _{PWM} =0 ,	50	12		kΩ
V _{IH_PWM}	PWM High Level Voltage	1050	2.00	2.25	2.50	V
V _{TRI_HI}	3-State Upper Threshold	SPIR	1.94	2.20	2.46	V
V_{TRI_LO}	3-State Lower Threst id	100 SC	0.75	0.95	1.15	V
V_{IL_PWM}	PWM Low Level Vol ne	Will As Mr	0.66	0.85	1.09	V
t _{D_HOLD-OFF}	3-State Sh Off Time	COCC		160	200	ns
$V_{\text{HiZ_PWM}}$	3-S ⁺ Op Volta	05 75 30	1.45	1.60	1.80	V
DISB# Inpu	t	C. 4. 5 L				
VIH DISB	High-Leve nput Voltage	CO. Mr	2			V
/IL_DIS.	v-Level Input Voltage				0.8	V
'PLD	Pull-Down Current	All.		10		μA
t _{PD_} , _{SBL}	Propagation Delay	PWM=GND, Delay Between DISB# from HIGH to LOW to GL from HIGH to LOW		25		ns
tPD_DISEH	Propagation Delay	PWM=GND, Delay Between DISB# from LOW to HIGH to GL from LOW to HIGH		25		ns
SMOD# Inp	ut O					
V _{IH} SMOD	High-Level Input Voltage		2			V
VIL_SMOD	Low-Level Input Voltage				8.0	V
I _{PLU}	Pull-Up Current			10		μΑ
t _{PD_SLGLL}	Propagation Delay	PWM=GND, Delay Between SMOD# from HIGH to LOW to GL from HIGH to LOW		10		ns
t _{PD_SHGLH}	Propagation Delay	PWM=GND, Delay Between SMOD# from LOW to HIGH to GL from LOW to HIGH		10		ns

Continued on the following page...

Electrical Characteristics


Typical values are V_{IN} = 12 V, V_{CIN} = 5 V, V_{DRV} = 5 V, and T_A = T_J = +25°C unless otherwise noted.

Symbol	Parameter	Condition		Тур.	Max.	Unit	
Thermal Warning Flag							
T _{ACT}	Activation Temperature			150		°C	
T _{RST}	Reset Temperature			135		°C	
R _{THWN}	Pull-Down Resistance	I _{PLD} =5 mA		30		Ω	
High-Side [Oriver (fsw = 1000 kHz, lout = 3	30 A, T _A = +25°C)					
R _{SOURCE_GH}	Output Impedance, Sourcing	Source Current=100 mA		1		Ω	
R _{SINK_GH}	Output Impedance, Sinking	Sink Current=100 mA		~9		Ω	
t _{R_GH}	Rise Time	GH=10% to 90%		10		ns	
t _{F_GH}	Fall Time	GH=90% to 10%		10		iio	
td_deadon	LS to HS Deadband Time	GL Going LOW to GH Going HIGH, 1.0 V GL to 10% GH		15	NO)	ns	
t _{PD_PLGHL}	PWM LOW Propagation Delay	PWM Going LOW to GH Going OW, VIL_PWM to 90% GH		20	30	ns	
t _{PD_PHGHH}	PWM HIGH Propagation Delay (SMOD# =0)	PWM Going HIGH to Coil HIG, VIH_PWM to 10% G (SIL \)D# \(\tag{Ls}>0\)	R	30	7	ns	
t _{PD_TSGHH}	Exiting 3-State Propagation Delay	PWM (FrState - Foil HIGH to GH: Going HIGH, 'H_PWM 10% GH	50	30	0/	ns	
Low-Side D	river (f _{SW} = 1000 kHz, I _{OUT} = 3	T _A +25°C,					
Rsource_gl	Output Impedance, So	S rce ent=100 riA		1		Ω	
Rsink_gl	Output Impedance, king	ink furrent=100 mA		0.5		Ω	
t _{R_GL}	Rise Time	اد L=10% to 30%		20		ns	
t_{F_GL}	Fall Time	GL=\$0% to 10%		10		ns	
td_deadoff	H to LS Dec. Time	CW Going LCW to GL Going HIGH, 2.2 V SW to 10% GL		15		ns	
tpr (Propagation lay	FWM Going PICH to GL Going LOW, VIH_PWM to 90% GL		10	25	ns	
ì, TSGLH	Ex ang 3-State Propagation Delay	PWM (From 3-State) Going LOW to GL Going HIGH, VIL_PWM to 10% GL		20		ns	
Boot lode	110 21,6	<u></u>	ı				
VF	Forward-Voltage Drop	I _F =20 mA		0.3		V	
VR	Breakdown Voltage	I _R =1 mA	22			V	

Figure 5. FWM Timing Diagram

Test Conditions: $V_{IN}=12 \text{ V}$, $V_{OUT}=1 \text{ V}$, $V_{CIN}=5 \text{ V}$, $V_{DRV}=5 \text{ V}$, $V_{DUT}=250 \text{ nH}$, $V_{A}=25^{\circ}\text{C}$, and natural convection cooling, unless otherwise specified.

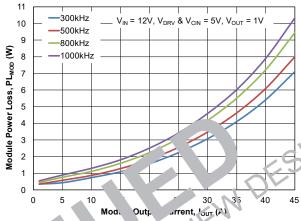
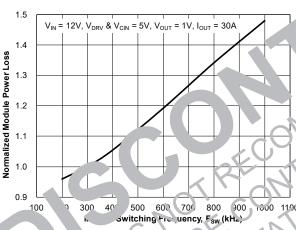



Figure 6. Safe Operating Area

Caure Loss vs. Output Current

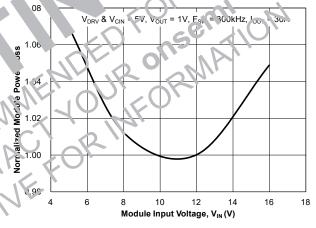


Figure . Power Loss vs. Switching Frequency

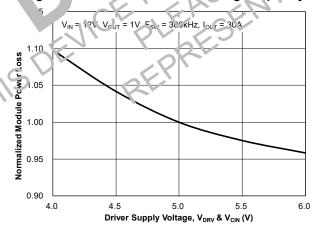


Figure 9. Power Loss vs. Input Voltage

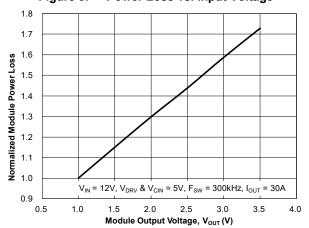
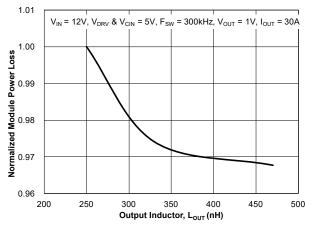



Figure 10. Power Loss vs. Driver Supply Voltage

Figure 11. Power Loss vs. Output Voltage

Test Conditions: $V_{IN}=12 \text{ V}$, $V_{OUT}=1 \text{ V}$, $V_{CIN}=5 \text{ V}$, $V_{DRV}=5 \text{ V}$, $L_{OUT}=250 \text{ nH}$, $T_A=25^{\circ}\text{C}$, and natural convection cooling, unless otherwise specified.

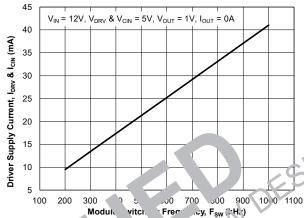


Figure 12. Power Loss vs. Output Inductor

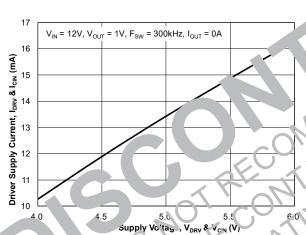
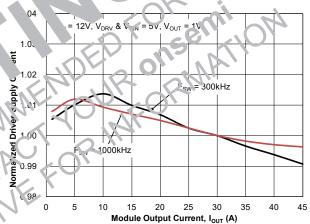



Figure . ver \$ pply Current vs. Switching frequency

i ure 1 Driver Supply Current vs. Driver Supply Voltage

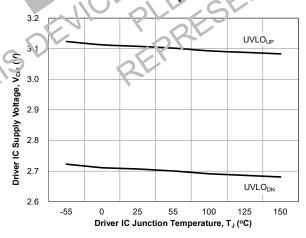


Figure 15. Driver Supply Current vs. Output Current

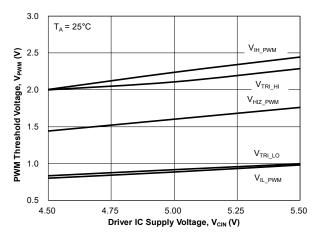
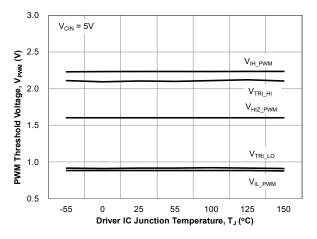



Figure 16. UVLO Threshold vs. Temperature

Figure 17. PWM Threshold vs. Driver Supply Voltage

Test Conditions: V_{CIN}=5 V, V_{DRV}=5 V, T_A=25°C, and natural convection cooling, unless otherwise specified.

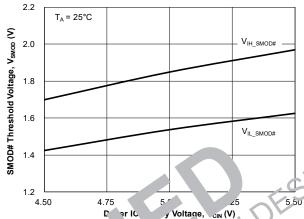
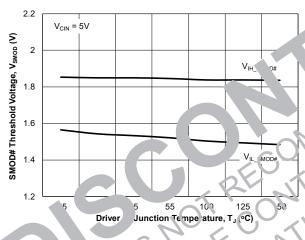
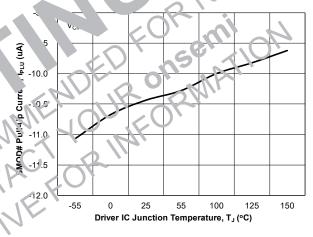
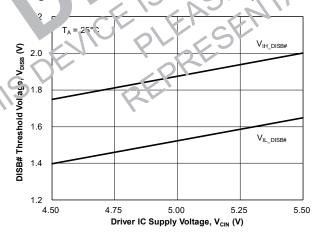




Figure 18. PWM Threshold vs. Temperature


Figure 19. MOD. Thre old vs. Driver Supply Voltage

Figur 20. SMOD# Threshold vs. Temperature

Figure 21. SMOD# Pull-Up Current vs. Temperature

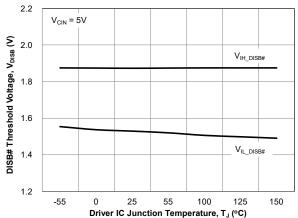
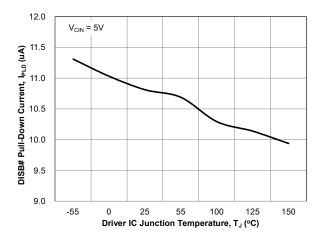



Figure 22. DISB# Threshold vs. Driver Supply Voltage

Figure 23. DISB# Threshold vs. Temperature

Test Conditions: VcIN=5 V, VDRV=5 V, TA=25°C, and natural convection cooling, unless otherwise specified.

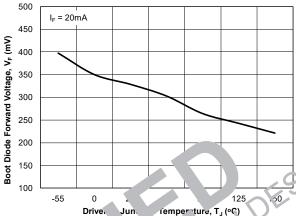


Figure 24. DISB# Pull-Down Current vs. Temperature

Figure 5. 'oot ode Forward Voltage vs.

Functional Description

The FDMF6840C is a driver-plus-FET module optimized for the synchronous buck converter topology. A single PWM input signal is all that is required to properly drive the high-side and the low-side MOSFETs. Each part is capable of driving speeds up to 1 MHz.

VCIN and Disable (DISB#)

The VCIN pin is monitored by an Under-Voltage Lockout (UVLO) circuit. When V_{CIN} rises above ~3.1 V, the driver is enabled. When V_{CIN} falls below ~2.7 V, the driver is disabled (GH, GL=0). The driver can also be disabled by pulling the DISB# pin LOW (DISB# < $V_{\text{IL_DISB}}$), which holds both GL and GH LOW regardless of the PWM input state. The driver can be enabled by raising the DISB# pin voltage HIGH (DISB# > $V_{\text{IH_DISB}}$).

Table 1. UVLO and Disable Logic

UVLO	DISB#	Driver State			
0	Х	Disabled (GH, GL=0)			
1	0	Disabled (GH, GL=0)			
1	1	Enabled (see Table 2)			
1	Open	Disabled (GH, GL=0)			

Note:

3. DISB# internal pull-down current source is 1 A.

Thermal Warning Flag (THWN#)

The FDMF6840C provides a think wating mag (THWN#) to warn of over-temper iture of dities. The thermal warning flag uses to an-drai output that pulls to CGND when the activation that activation is reached. The THW # output the recent temperature 35°C' Fo. 3, the THWN# output requires a full-content of the content of the content of the VCIN THW 4 does by a disable the DrMOS module.

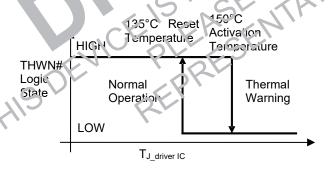


Figure 26. THWN Operation

Three-State PWM Input

The FDMF6840C incorporates a three-state 3.3 V PWM input gate drive design. The three-state gate drive has both logic HIGH level and LOW level, along with a three-state shutdown window. When the PWM input signal enters and remains within the three-state window for a defined hold-off time (to_HOLD-OFF), both GL and GH are pulled LOW. This enables the gate drive to shut down both high-side and low-side MOSFETs to support features such as phase shedding, which is common on multi-phase voltage regulators.

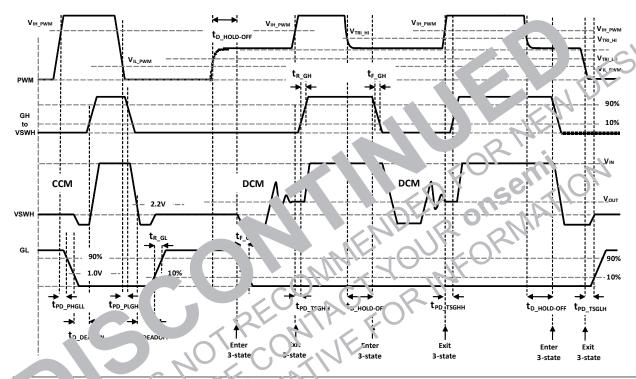
Exiting Three-State Conditi

When exiting a valid thre state andition, the FDMF6840C follows the VM out command. If the PWM input goes from nee-state is turned on. If the PWM input goes from three-state to HIGI the igh-common MOCFET is turned on. This is a strate in the 27. The FDMF6840C design at vs. short ropagation delays when exiting the ree-s, i.e. where we see Electrical Characteristics).

ow liac iver

Th. low lide driver (CL) is designed to drive a ground-referenced, low-R_{DS}(ON), N-chainel MCSFET. The bias for GL is internally connected between the VDRV and CGND pins. When the uriver is enabled, the driver's output is 180° out of phase with the PWM input. When the driver is disabled (DISB#=0 V), GL is held LOW.

High-Side Driver


The high-side driver (GH) is designed to drive a floating N-channel MOSFET. The bias voltage for the high-side drive is developed by a bootstrap supply circuit consisting of the internal Schottky diode and external buctstrap capacitor (CBOOT). During startup, VSWH is held at PGND, allowing CBOOT to charge to VDRV through the internal diode. When the PWM input goes HIGH, GH begins to charge the gate of the high-side MOSFET (Q1). During this transition, the charge is removed from CBOOT and delivered to the gate of Q1. As Q1 turns on, VswH rises to V_{IN} , forcing the BOOT pin to V_{IN} + V_{BOOT} , which provides sufficient V_{GS} enhancement for Q1. To complete the switching cycle, Q1 is turned off by pulling GH to V_{SWH}. C_{BOOT} is then recharged to V_{DRV} when V_{SWH} falls to PGND. GH output is in-phase with the PWM input. The high-side gate is held LOW when the driver is disabled or the PWM signal is held within the three-state window for longer than the three-state hold-off time, t_{D HOLD-OFF}.

Adaptive Gate Drive Circuit

The driver IC advanced design ensures minimum MOSFET dead-time, while eliminating potential shoot-through (cross-conduction) currents. It senses the state of the MOSFETs and adjusts the gate drive adaptively to ensure they do not conduct simultaneously. Figure 27 provides the relevant timing waveforms. To prevent overlap during the LOW-to-HIGH switching transition (Q2 off to Q1 on), the adaptive circuitry monitors the voltage at the GL pin. When the PWM signal goes

HIGH, Q2 begins to turn off after a propagation delay (t_{PD_PHGLL}). Once the GL pin is discharged below 1.0 V, Q1 begins to turn on after adaptive delay t_{D_DEADON} .

To preclude overlap during the HIGH-to-LOW transition (Q1 off to Q2 on), the adaptive circuitry monitors the voltage at the GH-to-PHASE pin pair. When the PWM signal goes LOW, Q1 begins to turn off after a propagation delay (t_{PD_PLGHL}). Once the voltage across GH-to-PHASE falls below 2.2 V, Q2 begins to turn on after adaptive delay $t_{D_DEADOFF}$.

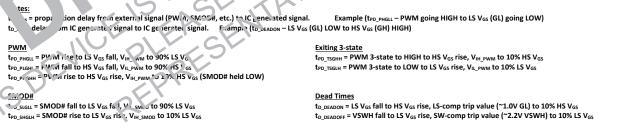


Figure 27. PWM and 3-StateTiming Diagram

Skip Mode (SMOD#)

The Skip Mode function allows for higher converter efficiency when operated in light-load conditions. When SMOD# is pulled LOW, the low-side MOSFET gate signal is disabled (held LOW), preventing discharge of the output capacitors as the filter inductor current attempts reverse current flow – known as "Diode Emulation" Mode.

When the SMOD# pin is pulled HIGH, the synchronous buck converter works in Synchronous Mode. This mode allows for gating on the Low Side MOSFET. When the SMOD# pin is pulled LOW, the low-side MOSFET is gated off. If the SMOD# pin is connected to the PWM controller, the controller can actively enable or disable SMOD# when the controller detects light-load condition from output current sensing. Normally this pin is active LOW. See Figure 28 for timing delays.

Table 2. SMOD# Logic

DISB#	PWM	SMOD#	GH	GL
0	X	X	0	0
1	3-State	X	0	0 (5)
1	0	0		0
1	1	0	1	
1	0	1	0	1
1	1	1	0	0

Note:

4. The SMOD# feature is intended to have a short pragatic delibetween the SMOD# signal and the low-side FET V_{GS} response time to control diode emulation and a cycle v-cycle hasis.

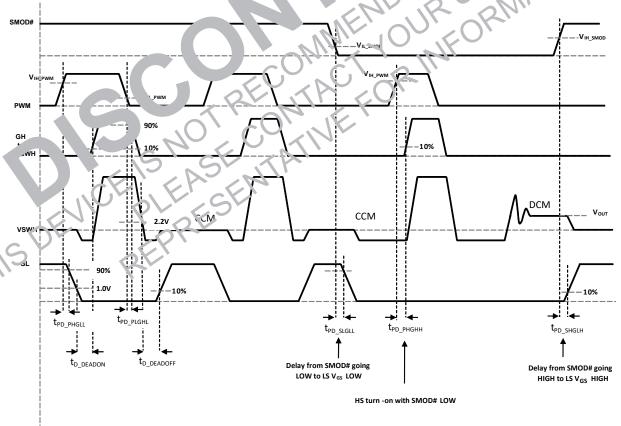


Figure 28. SMOD# Timing Diagram

Application Information

Supply Capacitor Selection

For the supply inputs (V_{CIN}), a local ceramic bypass capacitor is recommended to reduce noise and to supply the peak current. Use at least a 1 μ F X7R or X5R capacitor. Keep this capacitor close to the VCIN pin and connect it to the GND plane with vias.

Bootstrap Circuit

The bootstrap circuit uses a charge storage capacitor (C_{BOOT}), as shown in Figure 30. A bootstrap capacitance of 100 nF X7R or X5R capacitor is usually adequate. A series bootstrap resistor may be needed for specific applications to improve switching noise immunity. The boot resistor may be required when operating above 15 V_{IN} and is effective at controlling the high-side MOSFET turn-on slew rate and V_{SHW} overshoot. R_{BOOT} values from 0.5 to 3.0 Ω are typically effective in reducing VSWH overshoot.

VCIN Filter

The VDRV pin provides power to the gate drive of the high-side and low-side power MOSFET. In most cases, it can be connected directly to VCIN, the pin that provides power to the logic section of the driver. For additional noise immunity, an RC filter can be inserted between the VDRV and VCIN pins. Recommended values would be 10 Ω and 1 μF .

Power Loss and Efficiency

Measurement and Calculation

Refer to Figure 30 for power loss testing method.

Power loss calculations are:

$$P_{IN}=(V_{IN} \times I_{IN}) + (V_{5V} \times I_{5V})$$
 (1)

 $E = F_{BO} = 100 \times P_{OU} / P_{IN} (\%)$ (7)

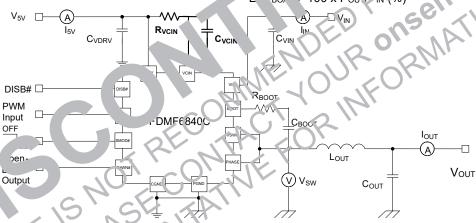


Figure 25. Block Diagram With VcIN Filter

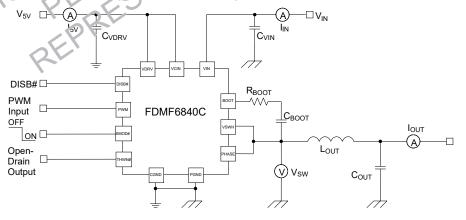


Figure 30. Power Loss Measurement

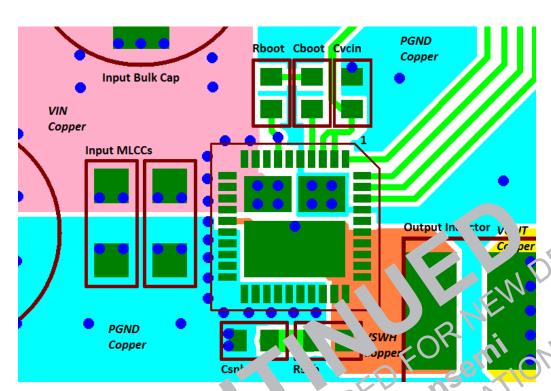

PCB Layout Guidelines

Figure 31 and Figure 32 provide an example of a proper layout for the FDMF6840C and critical components. All of the high-current paths, such as VIN, VSWH, VOUT, and GND copper, should be short and wide for low inductance and resistance. This aids in achieving a more stable and evenly distributed current flow, along with enhanced heat radiation and system performance.

Recommendations for PCB Designers

- Input ceramic bypass capacitors must be placed close to the VIN and PGND pins. This helps reduce the high-current power loop inductance and the input current ripple induced by the power MOSFET switching operation.
- 2. The V_{SWH} copper trace serves two purposes. In addition to being the high-frequency current path from the DrMOS package to the output inductor, it serves as a heat sink for the low-side MOSFET in the DrMOS package. The trace should be short and wide enough to present a low-impedance path for the high-frequency, high-current flow between the DrMOS and inductor. The short and wide trace minimizes electrical losses as well as the DrMOS temperature rise. Note that the V_{SWH} node is a voltage and high-frequency switching node v 'h nigh noise potential. Care should be taken to m. mize coupling to adjacent traces. Since this acts as a heat sink for the lower ** OSF. The using the largest area possit to in rov DrMOS cooling while maintaining acce table no e emission
- 3. An output inductor sould be at close to the FDMF6840C to min lize the power loss due to the V_{SWH} copper ... C a sholl also be alread so the inductor dilipation does an eat the DrMOS
- 4. Power in nch® MO FETs are used in the cutput and are cutive at minimizing ringing due to fast sinch. In most cases, no VSWH snubber is equire. If a snubber is used, it should be placed send the VSVH and PCND pins. The selected recustor are capacitor need to be the proper size for power dissipation.
- 5. VCIN, VDRV, and BCO capacitors should be placed as close as possible to the VCIN-to-CGND, VDRV-to-CGND, and BOOT-to-PHASE pin pairs to ensure clean and stable power. Routing width and length should be considered as well.
- Include a trace from the PHASE pin to the VSWH pin to improve noise margin. Keep this trace as short as possible.
- 7. The layout should include the option to insert a small-value series boot resistor between the boot capacitor and BOOT pin. The boot-loop size, including R_{BOOT} and C_{BOOT}, should be as small as possible. The boot resistor may be required when operating above 15 V_{IN} and is effective at controlling the high-side MOSFET turn-on slew rate and V_{SHW} overshoot. R_{BOOT} can improve noise operating margin in synchronous buck designs that may have

- noise issues due to ground bounce or high positive and negative V_{SWH} ringing. Inserting a boot resistance lowers the DrMOS efficiency. Efficiency versus noise trade-offs must be considered. R_{BOOT} values from 0.5 Ω to 3.0 Ω are typically effective in reducing V_{SWH} overshoot.
- 8. The VIN and PGND pins handle large current transients with frequency components greater than 100 MHz. If possible, these pins should be connected directly to the VIN and board GND planes. The use of thermal relief traces in series with these pins is discouraged since adds inductance to the power path. This add a inductance in series with either the VIN or FBNL bin de ades system noise immunity by incleasing sitivand required VSWH ringing.
- 9. GND pad and I ND ins would be connected to the GND oper in ne win mu'unle vias for stable grounding can create a noise in sier, offs wage level between CGND and I could lead to faulty operation of the gate driving and MOSFETs.
- 10... nging at the BOOT oin is nice effectively controlled by close placement of the boot capacitor. Do not add an additional EOOT to the PGND capacitor. This may lead to excess current flow inrough the BCOT dicale.
- 11. The SMOD# and DISB# pins have weak internal pull-up and pull-down current sources, respectively. These pins should not have any noise filter capa ito's. Do not to float these pins unless absolutely necessary.
- Use multiple vias on the VIN and VOUT copper areas to interconnect top, inner, and bottom layers to distribute current flow and heat conduction. Do not put many vias on the VSWH copper to avoid extra parasitic inductance and noise on the switching waveform. As long as efficiency and thermal performance are acceptable, place only one VSWH copper on the top layer and use no vias on the VSWH copper to minimize switch node parasitic noise. Vias should be relatively large and of reasonably low inductance. Critical highfrequency components, such as R_{BOOT}, C_{BOOT}, RC snubber, and bypass capacitors; should be located as close to the respective DrMOS module pins as possible on the top layer of the PCB. If this is not feasible, they can be connected from the backside through a network of low-inductance vias.

Example (1 γ) View) Figure 31. P 3 Layo

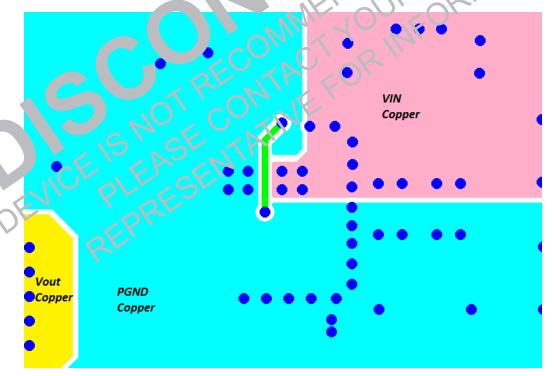


Figure 32. PCB Layout Example (Bottom View)

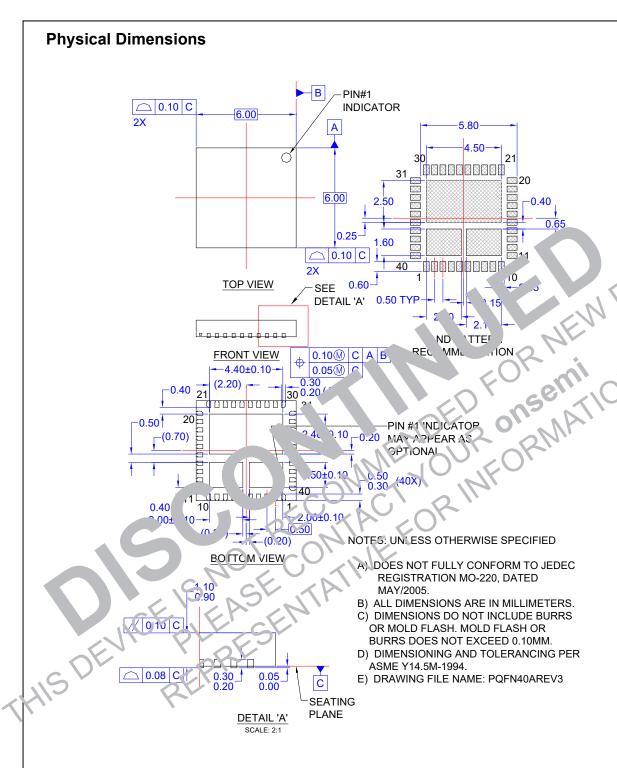
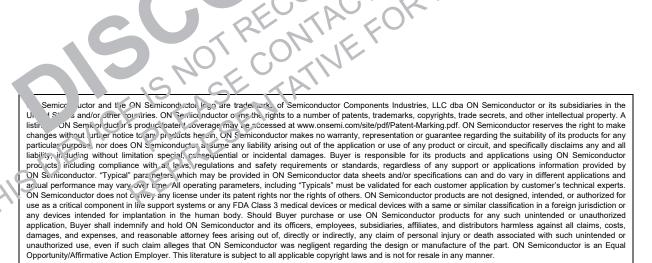



Figure 33. 40-Lead, Clipbond PQFN DrMOS, 6.0x6.0 mm Package

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada.

Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 **Japan Customer Focus Center** Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative