ON Semiconductor[®]

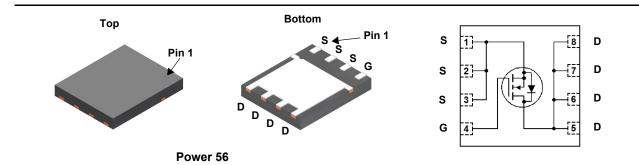
FDMS003N08C N-Channel Shielded Gate PowerTrench[®] MOSFET 80 V, 147 A, 3.1 m Ω

Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)}$ = 3.1 m Ω at V_{GS} = 10 V, I_D = 56 A
- Max $r_{DS(on)}$ = 8.1 m Ω at V_{GS} = 6 V, I_D = 28 A
- 50% lower Qrr than other MOSFET suppliers
- Lowers switching noise/EMI

www.onsemi.com

- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MV MOSFET is produced using ON Semiconductor's advanced PowerTrench[®] process that incorporates Shielded Gate technology. This process has been optimized to minimise on-state resistance and yet maintain superior switching performance with best in class soft body diode.

Applications

- Primary DC-DC MOSFET
- Synchronous Rectifier in DC-DC and AC-DC
- Motor Drive
- Solar

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Param	eter		Ratings	Units
V _{DS}	Drain to Source Voltage			80	V
V _{GS}	Gate to Source Voltage			±20	V
	Drain Current -Continuous	T _C = 25 °C	(Note 5)	147	
	-Continuous	T _C = 100 °C	(Note 5)	92	•
ID	-Continuous	T _A = 25 °C	(Note 1a)	22	Α
	-Pulsed		(Note 4)	658	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	486	mJ
	Power Dissipation	T _C = 25 °C		125	14/
PD	Power Dissipation	T _A = 25 °C	(Note 1a)	2.7	W
T _J , T _{STG}	Operating and Storage Junction Tempera	ature Range	-	-55 to +150	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	1	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient (Note 1a) 45	0/00

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS003N08C	FDMS003N08C	Power 56	13 "	12 mm	3000 units

Parameter	Test Conditions	Min	Тур	Max	Units
cteristics					
Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	80			V
Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		60		mV/°C
Zero Gate Voltage Drain Current	V _{DS} = 64 V, V _{GS} = 0 V			1	μA
Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			100	nA
teristics			•	-	
Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 310 μA	2.0	2.9	4.0	V
Gate to Source Threshold Voltage Temperature Coefficient	I_D = 310 μ A, referenced to 25 °C		-8.2		mV/°C
	V _{GS} = 10 V, I _D = 56 A		2.6	3.1	
Static Drain to Source On Resistance	V _{GS} = 6 V, I _D = 28 A		3.8	8.1	mΩ
	V_{GS} = 10 V, I _D = 56 A, T _J = 125 °C		4.3	5.2	
Forward Transconductance	V _{DS} = 5 V, I _D = 56 A		123		S
haracteristics					
Input Capacitance			3820	5350	pF
Output Capacitance	─ V _{DS} = 40 V, V _{GS} = 0 V, f = 1 MHz		1335	1870	pF
Reverse Transfer Capacitance			44	80	pF
Gate Resistance		0.1	0.6	1.3	Ω
Characteristics					
Turn-On Delay Time			20	36	ns
Rise Time	V _{DD} = 40 V, I _D = 56 A,		8	16	ns
Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		40	64	ns
Fall Time			12	23	ns
Total Gate Charge	V _{GS} = 0 V to 10 V		52	73	nC
Total Gate Charge	$V_{GS} = 0 V$ to $6 V$ $V_{DD} = 40 V$,		33	46	nC
Gate to Source Charge	I _D = 56 A		17		nC
Gate to Drain "Miller" Charge			10		nC
Output Charge	V _{DD} = 40 V, V _{GS} = 0 V		77		nC
Total Gate Charge Sync	V _{DS} = 0 V, I _D = 56 A		44		nC
ce Diode Characteristics					
	$V_{GS} = 0 V, I_S = 2.2 A$ (Note 2)		0.7	1.2	
Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 56 A$ (Note 2)		0.8	1.3	V
Reverse Recovery Time			28	45	ns
Reverse Recovery Charge	—I _F = 28 A, di/dt = 300 A/μs		53	8/	nC

On Characteristics

Off Characteristics

Symbol

 $\mathsf{BV}_{\mathsf{DSS}}$

 ΔT_{J}

IDSS

 I_{GSS}

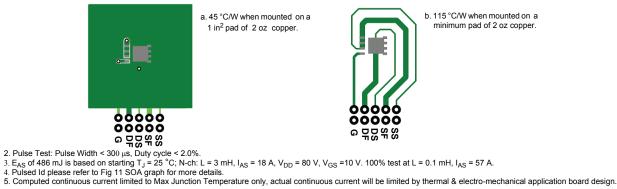
 ΔBV_{DSS}

Electrical Characteristics

••						
V _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 310 μA	2.0	2.9	4.0	V
$\Delta V_{GS(th)}$ ΔT_J	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 310 μ A, referenced to 25 °C		-8.2		mV/°C
r _{DS(on)}		V _{GS} = 10 V, I _D = 56 A		2.6	3.1	
	Static Drain to Source On Resistance	V _{GS} = 6 V, I _D = 28 A		3.8	8.1	mΩ
		V _{GS} = 10 V, I _D = 56 A, T _J = 125 °C		4.3	5.2	
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 56 A		123		S

Dynamic Characteristics

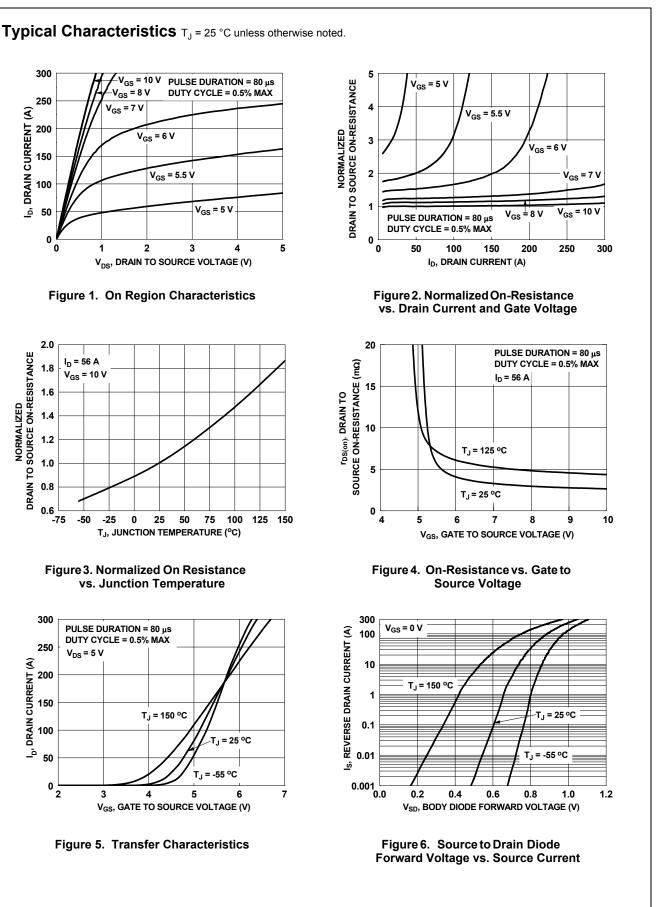
C _{iss}	Input Capacitance	V 40.V V 0.V		3820	5350	pF
C _{oss}	Output Capacitance	────V _{DS} = 40 V, V _{GS} = 0 V, ────f = 1 MHz		1335	1870	pF
C _{rss}	Reverse Transfer Capacitance			44	80	pF
R _g	Gate Resistance		0.1	0.6	1.3	Ω


Switching Characteristics

t _{d(on)}	Turn-On Delay Time		20	36	ns
t _r	Rise Time	V _{DD} = 40 V, I _D = 56 A,	8	16	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} = 10 V, R _{GEN} = 6 Ω	40	64	ns
t _f	Fall Time		12	23	ns
Qg	Total Gate Charge	V _{GS} = 0 V to 10 V	52	73	nC
Qg	Total Gate Charge	$V_{GS} = 0 V$ to $6 V$ $V_{DD} = 40 V$,	33	46	nC
Q _{gs}	Gate to Source Charge	I _D = 56 A	17		nC
Q _{gd}	Gate to Drain "Miller" Charge		10		nC
Q _{oss}	Output Charge	V _{DD} = 40 V, V _{GS} = 0 V	77		nC
Q _{sync}	Total Gate Charge Sync	V _{DS} = 0 V, I _D = 56 A	44		nC

Drain-Source Diode Characteris

V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.2 A$ (Note	2)	0.7	1.2	V
	Source to Drain Diode Forward voltage	$V_{GS} = 0 V, I_S = 56 A$ (Note	2)	0.8	1.3	v
t _{rr}	Reverse Recovery Time	I _F = 28 A, di/dt = 300 A/μs		28	45	ns
Q _{rr}	Reverse Recovery Charge	$-1_{\rm F} = 20$ A, di/dt = 300 A/µs		53	84	nC
t _{rr}	Reverse Recovery Time			23	36	ns
Q _{rr}	Reverse Recovery Charge	I _F = 28 A, di/dt = 1000 A/μs		121	194	nC


1. $R_{\theta,JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. $R_{\theta,CA}$ is determined by the user's board design.

a. 45 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 115 °C/W when mounted on a minimum pad of 2 oz copper.

300

250

200

150

100

50

0

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

300

250

200

150

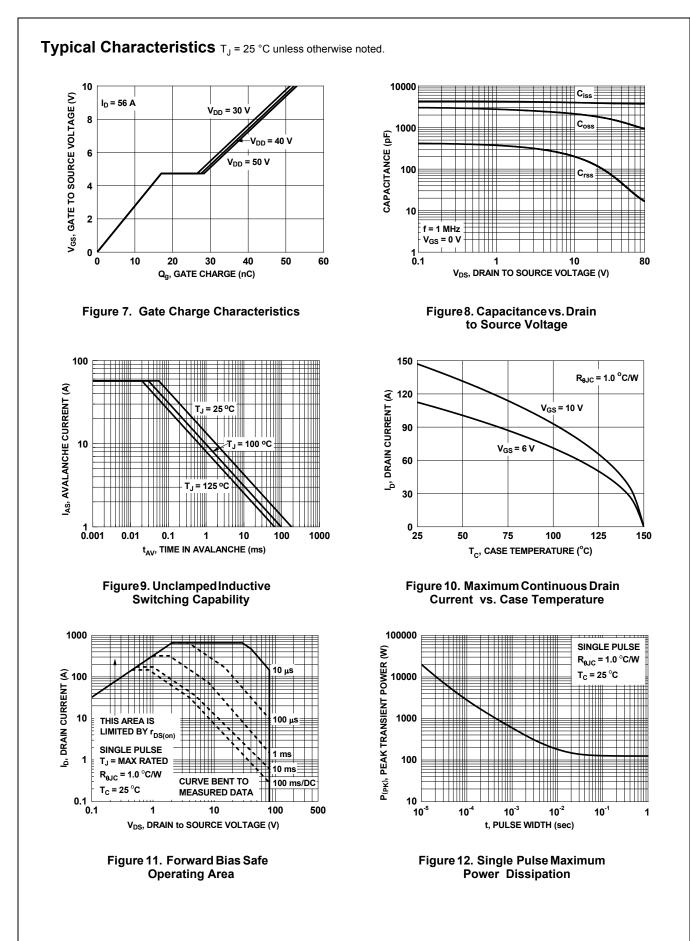
100

50

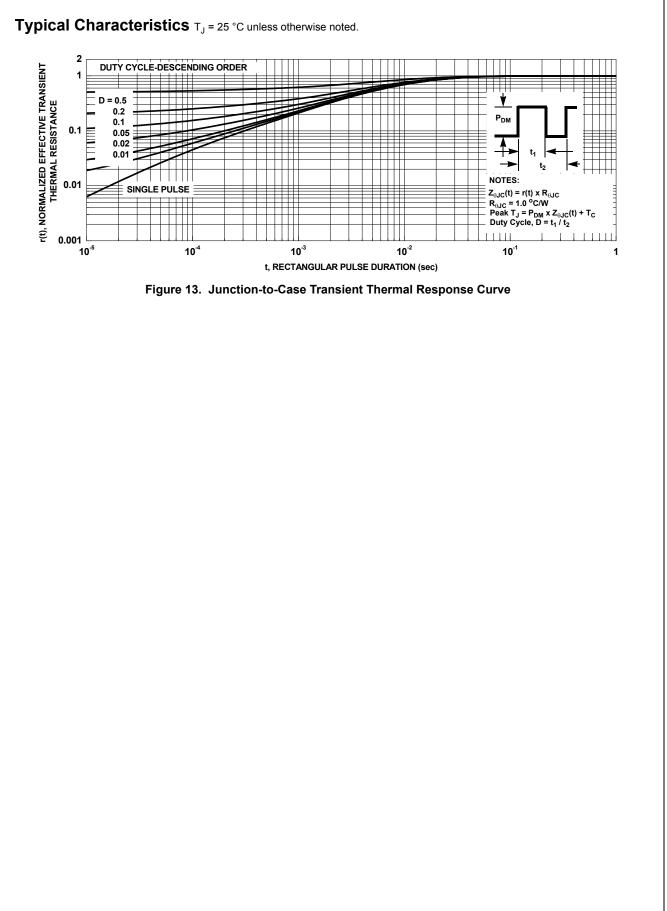
0 ∟ 2

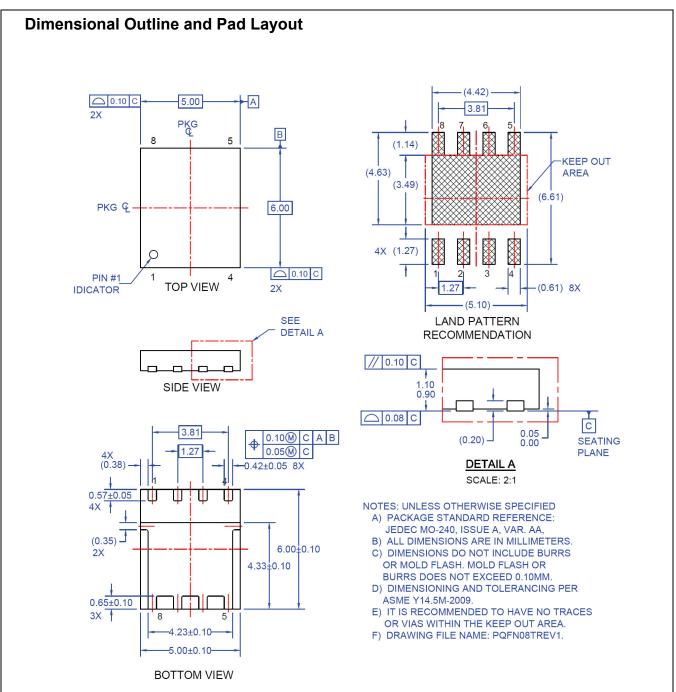
I_D, DRAIN CURRENT (A)

-75 -50


DRAIN TO SOURCE ON-RESISTANCE

NORMALIZED


0


I_D, DRAIN CURRENT (A)

www.onsemi.com

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.

ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by

Voltation of the second standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor products, including complications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.