<u>MOSFET</u> – POWERTRENCH[®], P-Channel

-30 V, -122 A, 3.2 $\textbf{m}\Omega$

General Description

The FDMS6681Z has been designed to minimize losses in load switch applications. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ and ESD protection.

Features

- Max $r_{DS(on)} = 3.2 \text{ m}\Omega$ at $V_{GS} = -10 \text{ V}$, $I_D = -21.1 \text{ A}$
- Max $r_{DS(on)} = 5.0 \text{ m}\Omega$ at $V_{GS} = -4.5 \text{ V}$, $I_D = -15.7 \text{ A}$
- Advanced Package and Silicon Combination for Low rDS(on)
- HBM ESD Protection Level of 8 kV Typical (Note 3)
- MSL1 Robust Package Design
- RoHS Compliant

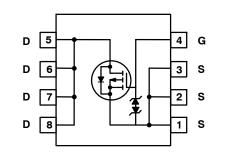
Applications

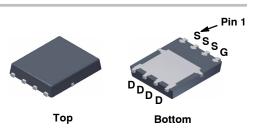
- Load Switch in Notebook and Server
- Notebook Battery Pack Power Management

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

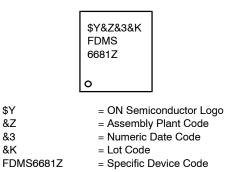
Symbol	Parameter	Ratings	Unit		
V _{DS}	Drain to Source Voltage	-30	V		
V _{GS}	Gate to Source Voltage	±25	V		
Ι _D	Drain Current – Continuous $T_C = 25^{\circ}C$ (Note 5)	-122	А		
	– Continuous T _C = 100°C (Note 5)	-77			
	– Continuous T _A = 25°C (Note 1a)	-21.1			
	 – Pulsed (Note 4) 	-600			
PD	Power dissipation T _C = 25°C	73	W		
	Power dissipation $T_A = 25^{\circ}C$ (Note 1a)	2.5			
T _{J,} T _{STG}	Operating and Storage Junction Temperature Range	–55 to +150	°C		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS


Symbol	Parameter	Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.7	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Note 1a)	50	

ON Semiconductor®


www.onsemi.com

Power 56 (PQFN8) CASE 483AE

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

© Semiconductor Components Industries, LLC, 2009 May, 2019 – Rev. 3

PACKAGE MARKING AND ORDERING INFORMATION

t_{rr} Qrr

Reverse Recovery Charge

Device Marking	Device	Package	Shipping [†]
FDMS6681Z	FDMS6681Z	Power 56	3000 Units/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

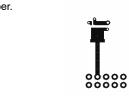
ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions		Min	Тур	Max	Unit
OFF CHARA	CTERISTICS	•					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V		-30			V
$\frac{\Delta {\sf BV}_{\sf DSS}}{\Delta {\sf T}_{\sf J}}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu A$, referen		20		mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, \text{ V}_{GS} = 0$	V			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 25 \text{ V}, \text{ V}_{DS} = 0$	V			±10	μA
ON CHARAC	CTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250$) μΑ	-1	-1.7	-3	V
$\frac{\Delta V_{\text{GS(th)}}}{\Delta T_{\text{J}}}$	Gate to Source Threshold Voltage Temperature Coefficient	I _D = -250 μA, referen		-7		mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = -10 V, I _D = -22		2.7	3.2	mΩ	
		$V_{GS} = -4.5$ V, $I_D = -15.7$ A			4.0	5.0	
		$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -22 \text{ T}_{J} = 125^{\circ}\text{C}$	2.1 A,		3.9	5.0	
9 FS	Forward Transconductance	V _{DD} = -10 V, I _D = -22	2.1 A		143		S
DYNAMIC C	HARACTERISTICS						
C _{iss}	Input Capacitance	V _{DS} = -15 V, V _{GS} = 0 V, f = 1MHz			7803	10380	pF
C _{oss}	Output Capacitance				1540	2050	
C _{rss}	Reverse Transfer Capacitance			1345	2020		
SWITCHING	CHARACTERISTICS						
t _{d(on)}	Turn – On Delay Time	$V_{DD} = -15 \text{ V}, \text{ I}_{D} = -22.1 \text{ A},$			15	24	ns
t _r	Rise Time	V _{GS} = -10 V, R _{GEN} =	6Ω		38	61	
t _{d(off)}	Turn – Off Delay Time				260	416	
t _f	Fall Time	1			197	316	
Qg	Total Gate Charge	V _{GS} = 0 V to -10 V			172	241	nC
Qg	Total Gate Charge	$V_{GS} = 0 V \text{ to } -5 V$			97	136	
Q _{gs}	Gate to Source Charge	V _{DD} = -15 V, i _D = -22.1 A			22		
Q _{gd}	Gate to Drain "Miller" Charge				46		
DRAIN-SOU	IRCE DIODE CHARACTERISTICS						
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = -2.1 A (Note 2)			0.68	1.2	V
		V _{GS} = 0 V, I _S = -22.1 A (Note 2)			0.79	1.25	
	Reverse Recovery Time	I _F = -22.1 A, di/dt = 100 A/μs			44	71	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

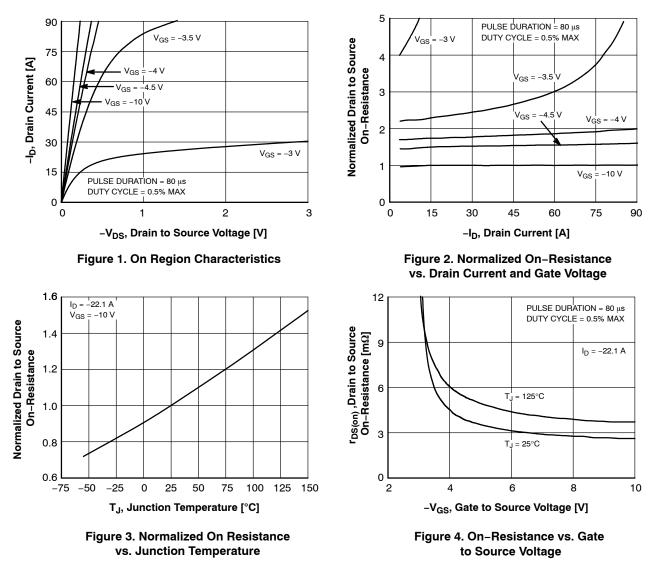
nC

39

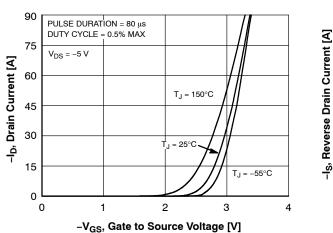

63

NOTES:

1. $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

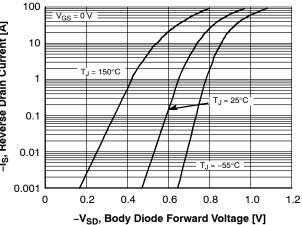


 a) 50°C/W when mounted on a 1 in² pad of 2 oz copper.



b) 125°C/W when mounted on a minimum pad of 2 oz copper.

- 2. Pulse Test: Pulse Width < 300 µs, Duty cycle < 2.0%.
- 3. The diode connected between the gate and source serves only as protection against ESD. No gate overvoltage rating is implied.
- 4. Pulsed I_D please refer to Figure 12 SOA graph for more details.
- 5. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal electro-mechanical application board design.



TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted

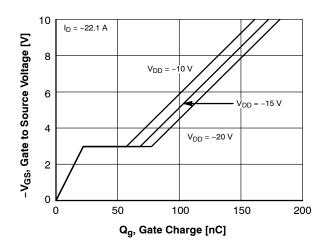
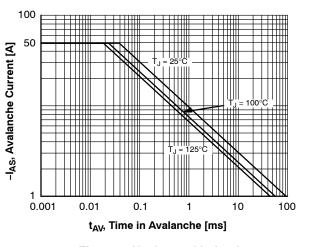



Figure 7. Gate Charge Characteristics

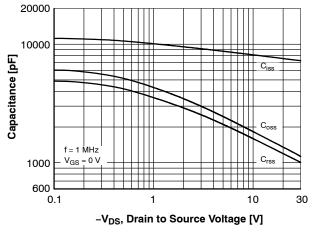
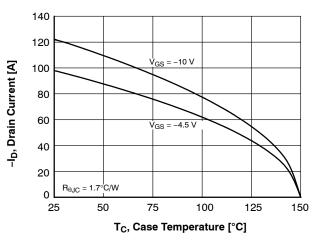
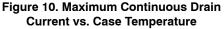
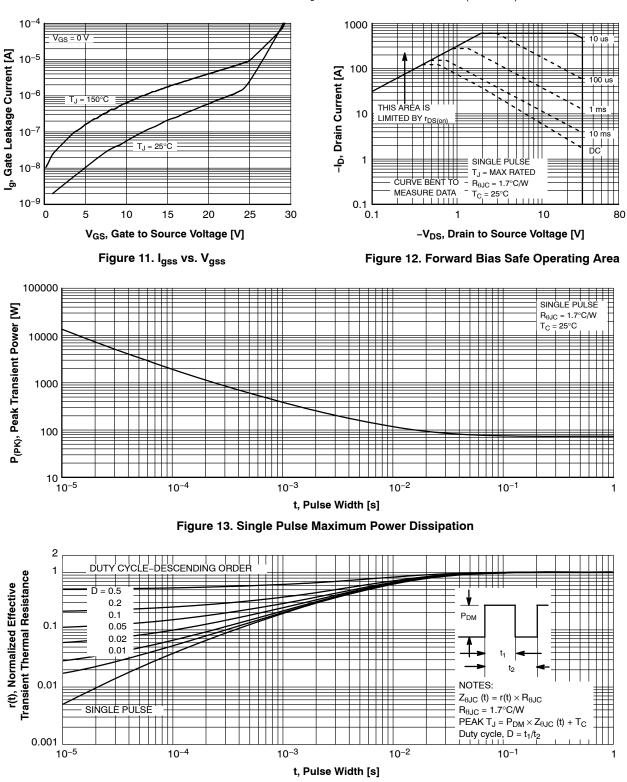
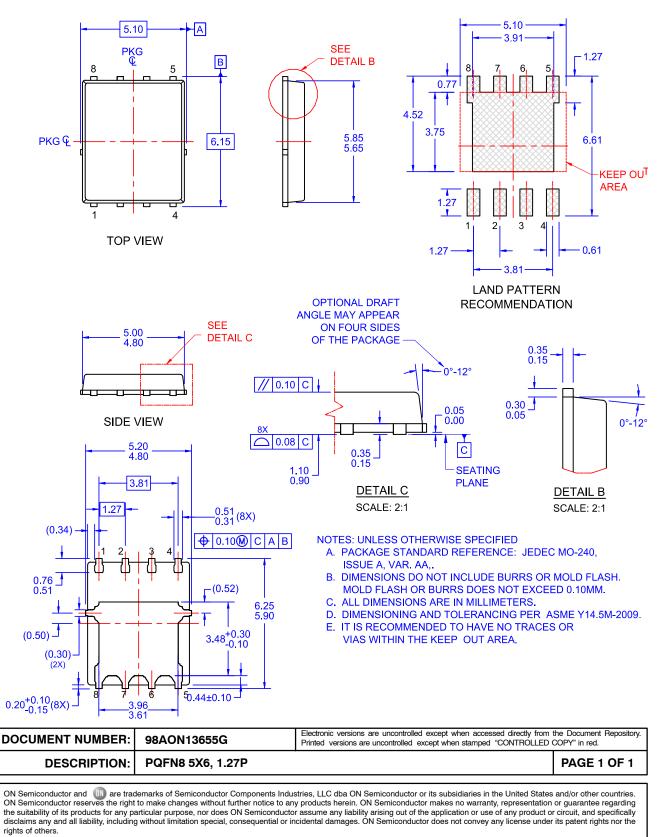





Figure 8. Capacitance vs. Drain to Source Voltage

TYPICAL CHARACTERISTICS $T_J = 25^{\circ}C$ unless otherwise noted (continued)


Figure 14. Transient Thermal Response Curve

POWERTRENCH is registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

PQFN8 5X6, 1.27P CASE 483AE **ISSUE A**

DATE 27 SEP 2017

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative