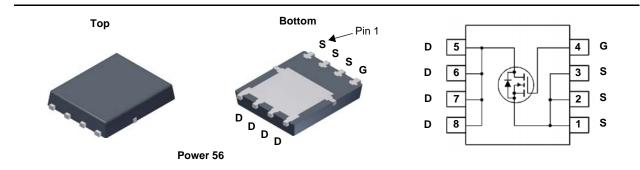


N-Channel PowerTrench[®] MOSFET 30 V, 131 A, 2.5 m Ω

Features

- Max $r_{DS(on)} = 2.5 \text{ m}\Omega \text{ at } V_{GS} = 10 \text{ V}, I_D = 26 \text{ A}$
- Max $r_{DS(on)}$ = 3.6 m Ω at V_{GS} = 4.5 V, I_D = 21.5 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant



General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed ang body diode reverse recovery performance.

Applications

- VRM Vcore Switching For Desktop And Server
- OringFET / Load Switching
- DC-DC Conversion
- Motor Bridge Switch

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

Symbol	Param	eter		Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V
	Drain Current -Continuous	T _C = 25 °C	(Note 6)	131	
	-Continuous	T _C = 100 °C	(Note 6)	83	٥
ID	-Continuous	T _A = 25 °C	(Note 1a)	26	— A
	-Pulsed		(Note 5)	507	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	93	mJ
D	Power Dissipation	T _C = 25 °C		65	14/
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

R_{\thetaJC}	Thermal Resistance, Junction-to-Case	1.9	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient (Note 1a	50	C/vv

Package Marking and Ordering Information

Device N	evice Marking Device		Package	Reel Size	Tape Width	Quantity	
FDMS	8020	FDMS8020	Power 56	13 "	12 mm	3000 units	

Тур	Max	Units
		V
14		mV/°C
	1	μA
	100	nA
1.5	3.0	V
-6		mV/°C
2.0	2.5	
2.6	3.6	mΩ
2.9	3.7	1
154		S
2855	3800	pF
1050	1400	pF

FDMS8020 N-Channel PowerTrench[®] MOSFET

Dynamic Characteristics

Symbol

 BV_{DSS}

 ΔBV_{DSS}

 ΔT_{J}

I_{DSS}

I_{GSS}

V_{GS(th)}

 ΔT_{J}

r_{DS(on)}

gfs

 $\Delta V_{GS(th)}$

Off Characteristics

On Characteristics

Coefficient

Electrical Characteristics T_J = 25 °C unless otherwise noted.

Gate to Source Leakage Current, Forward V_{GS} = 20 V, V_{DS} = 0 V

Parameter

Drain to Source Breakdown Voltage

Breakdown Voltage Temperature

Zero Gate Voltage Drain Current

Gate to Source Threshold Voltage

Gate to Source Threshold Voltage

Static Drain to Source On Resistance

Temperature Coefficient

Forward Transconductance

C _{iss}	Input Capacitance		2855	3800	pF
C _{oss}	Output Capacitance	──── V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	1050	1400	pF
C _{rss}	Reverse Transfer Capacitance		115	175	pF
Rg	Gate Resistance		0.9		Ω

Test Conditions

 $I_D = 250 \ \mu$ A, referenced to 25 °C

 $I_D = 250 \ \mu A$, referenced to 25 °C

 $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 26 \text{ A}, \text{ T}_{J} = 125 \text{ °C}$

 $I_D=250~\mu\text{A},~V_{GS}=0~V$

 $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$

 $V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$

V_{GS} = 10 V, I_D = 26 A V_{GS} = 4.5 V, I_D = 21.5 A

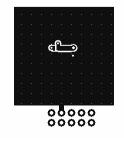
 $V_{DS} = 5 V, I_{D} = 26 A$

Min

30

1.0

Switching Characteristics


t _{d(on)}	Turn-On Delay Time		12	22	ns
t _r	Rise Time	V _{DD} = 15 V, I _D = 26 A,	5.7	12	ns
t _{d(off)}	Turn-Off Delay Time	V_{DD} = 15 V, I _D = 26 A, V _{GS} = 10 V, R _{GEN} = 6 Ω	32	52	ns
t _f	Fall Time		4	10	ns
Q _g	Total Gate Charge	V _{GS} = 0 V to 10 V	43	61	nC
Q _g	Total Gate Charge	$V_{GS} = 0 V \text{ to } 4.5 V V_{DD} = 15 V,$	21	29	nC
Q _{gs}	Gate to Source Charge	I _D = 26 A	7.3		nC
Q _{gd}	Gate to Drain "Miller" Charge		6.0		nC

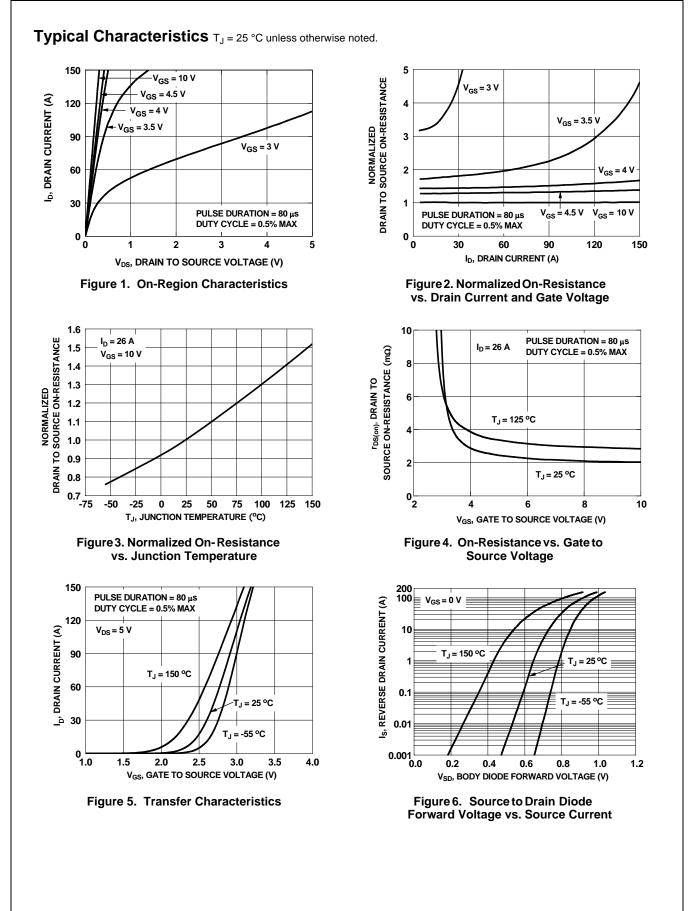
Drain-Source Diode Characteristics

V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 2.1 A$	(Note 2)	0.68	1.1	V
	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_{S} = 26 A$	(Note 2)	0.78	1.2	v
t _{rr}	Reverse Recovery Time	I _F = 26 A, di/dt = 100 A/μs		37	58	ns
Q _{rr}	Reverse Recovery Charge			18	33	nC
t _{rr}	Reverse Recovery Time	I _F = 26 A, di/dt = 300 A/μs		30	48	ns
Q _{rr}	Reverse Recovery Charge			36	57	nC

Notes:

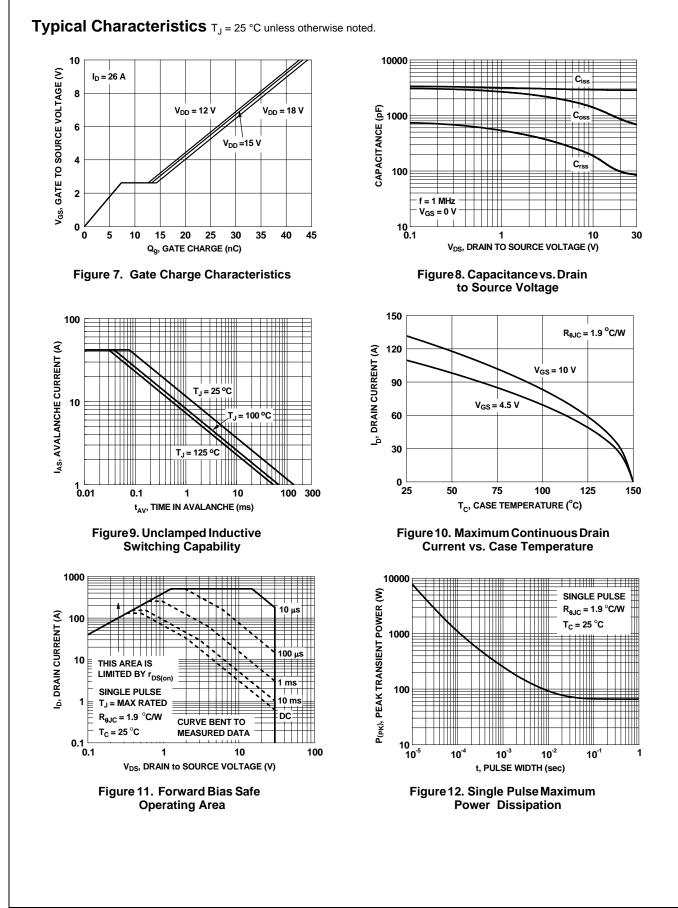
1. R_{0,JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0CA} is determined by the user's board design.

a) 50 °C/W when mounted on a 1 in² pad of 2 oz copper


b) 125 °C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

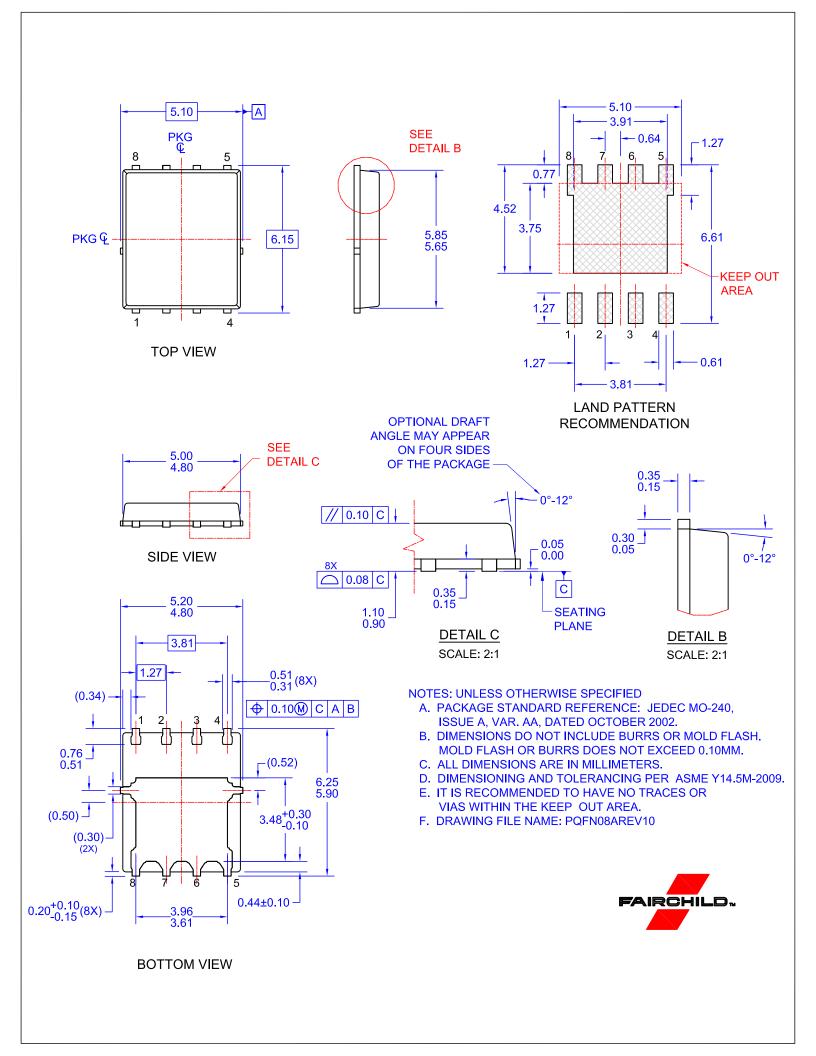
- 3. Starting T_J = 25 °C; N-ch: L = 0.3 mH, I_{AS} = 25 A, V_DD = 27 V, V_GS = 10 V.
- 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.


5. Pulsed Id please refer to SOA curve for more details.

6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.



©2011 Fairchild Semiconductor Corporation FDMS8020 Rev. 1.3



©2011 Fairchild Semiconductor Corporation FDMS8020 Rev. 1.3

FDMS8020 N-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC