

N-Channel Power Trench Mosfet Chip

100V, 96A, $8.5m\Omega^1$

Part	V _{(BR)DSS}	I _{Dn}	R _{DS(on)} Max	Die Size		
FDP085N10A	100V	96A	$8.5 \mathrm{m}\Omega^{1}$	2.4 x 4.4 mm ²		
See page 2 for ordering part numbers & supply formats						

Applications

- High density AC / DC Converters
- Motor drives & Micro Inverters
- High Power & Current Handling Capability

Features

- 2
- Low R_{DS (on)} per mm²
- Low Gate Charge, Fast Switching

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain to Source Voltage		100	V
V _{GSS}	Gate to Source Voltage		±20	V
I _D	Drain Current ²	Continuous (T _c = 25°C)	96	
		Continuous (T _c = 100°C)	68	A
I _{DM}	Drain Current ³	Pulsed	384	
T _J , T _{STG}	Operation Junction & Storage Temperature		-55 to 175	°C
E _{AS}	Single Pulsed Avalanche Energy ⁴	L = 3mH, I _{AS} = 13.4A, R _G =25Ω Starting T _J =25°C	269	mJ
dv/dt	Peak Diode Recovery dv/dt ⁴	$I_{SD} \le 96A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$ Starting $T_J=25^{\circ}C$	6	V/ns

Static Characteristics, T_J = 25° unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
BV _{DSS}	Drain to Source Breakdown Voltage	$I_{\rm D}$ = 250µA, $V_{\rm GS}$ = 0V	100	-	-	V
V _{GS(th)}	Gate threshold Voltage	$V_{GS} = V_{DS,} I_{D} = 250 \mu A$	2.0	-	4.0	V
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 80V, V_{GS} = 0V$	-	-	1	μΑ
	Zero Gate Voltage Drain Current @ 150°C	$V_{DS} = 80V, V_{GS} = 0V$	-	-	500	
I _{GSS}	Gate to Body Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$	-	-	±100	nA
R _{DS(on)}	Static Drain to Source On Resistance ¹	V _{GS} = 10V, I _D = 96A	-	7.35	8.5	mΩ

Notes:

- 1. Defined by chip design, not subject to 100% production test at wafer level
- 2. Performance will vary based on assembly technique and substrate choice
- 3. Repetitive Rating: Pulse width limited by maximum junction temperature

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com

Maximum Ratings

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
g _{FS}	Forward Transconductance	V _{DS} = 10V, I _D = 96A	-	72	-	S
ESR	Equivalent Series Resistance (G-S)	f = 1MHz	-	0.97	-	Ω
C _{iss}	Input Capacitance		-	2025	2695	pF
C _{oss}	Output Capacitance	$V_{DS} = 50V, V_{GS} = 0V$	-	468	620	pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz	-	20	-	pF
C _{oss} (er)	Energy Related Output Capacitance	V_{DS} = 50V, V_{GS} = 0V	-	752	-	pF
Q _{g(tot)}	Total Gate Charge at 10V		-	31	40	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DS} = 50V, I_D = 96A$	-	9.7	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	$V_{GS} = 10V^5$	-	5.0	-	nC
Q _{gd}	Gate to Drain "Miller" Charge		-	7.5	-	nC

Dynamic Characteristics⁴, T_J = 25°C unless otherwise noted

Switching Characteristics⁴, T_J = 25°C unless otherwise noted

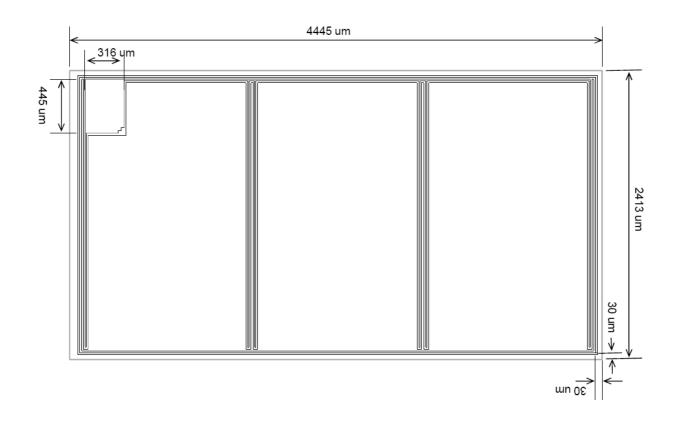
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
t _{d(on)}	Turn-On Delay Time		-	18	46	ns
t _r	Turn-On Rise Time	$V_{DD} = 50V, I_D = 96A$ $V_{GS} = 10V R_{GEN} = 4.7\Omega^5$	-	22	54	ns
t _{d(off)}	Turn-Off Delay Time	$V_{GS} = 10V R_{GEN} = 4.7\Omega^{\circ}$	-	29	68	ns
t _f	Turn-Off Fall Time		-	8	26	ns

Drain-Source Diode Characteristics⁴, T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
ا _s	Maximum Continuous Drain to Source Diode Forward Current		-	-	96	А
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	384	А
V _{SD}	Drain to Source Diode Forward Voltage	$V_{GS} = 0V, I_{SD} = 96A$	-	-	1.3	V
t _{rr}	Reverse Recovery Time V _{DD} =50V, V _{GS} =0V, I _{SD} =96A		-	59	-	ns
Q _{rr}	Reverse Recovery Charge	dI _F /dt = 100A/µs	-	80	-	nC

Notes:

4. Characterised by design & tested at component level, not subject to production test at wafer level

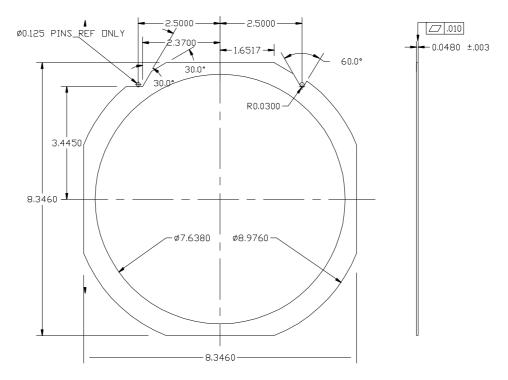

5. Essentially independent of Operating Temperature Typical Characteristics

Ordering Guide

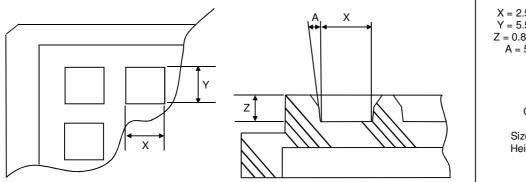
Part Number	Format	Detail / Drawing		
FDP085N10AMW	Un-sawn wafer, electrical rejects inked	Page 3		
FDP085N10AMWF	Sawn wafer on film-frame	Page 4		
FDP085N10AMD	Singulated die / chips in waffle pack Pag			
Note: Singulated Die / Chips can also be supplied in Pocket Tape or SurfTape® on request				

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com

Die Drawing



Mechanical Data


Parameter			Units	
Chip Dimensions Un-sawn	4445 x 2	4445 x 2413		
Chip Thickness (Nominal)	200		μm	
Gate Pad Size	316 x 4	45	μm	
Wafer Diameter	200 (subject to change)		mm	
Saw Street	60 (subject to change)		μm	
Wafer orientation on frame	Wafer notch parallel with frame flat			
Topside Metallisation & Thickness	Al / Cu +TiW+Ti	4	μm	
Backside Metallisation & Thickness	Ti-VNi-Ag	0.65	μm	
Topside Passivation	Unpassivated			
Recommended Die Attach Material	Soft Solder or Conductive Epoxy			
Recommended Wire Bond - Gate	Al 1	Al 125μm X1		
Recommended Wire Bond – Source	Al 500µm X3 double stitch			

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com

Sawn Wafer on Film-Frame – Dimensions (inches)

Die in Waffle Pack – Dimensions (mm)

 $\begin{array}{l} X=2.54mm \pm 0.13mm \mbox{ pocket size} \\ Y=5.56mm \pm 0.13mm \mbox{ pocket size} \\ Z=0.89mm \pm 0.08mm \mbox{ pocket depth} \\ A=5^{\circ}\pm 1/2^{\circ} \mbox{ pocket draft angle} \\ No \mbox{ Cross Slots} \\ Array=10 \ X \ 6 \ (60) \end{array}$

OVERALL TRAY SIZE

 $\begin{array}{l} \text{Size} = 50.67 \text{mm} \pm 0.25 \text{mm} \\ \text{Height} = 3.94 \text{mm} \pm 0.13 \text{mm} \\ \text{Flatness} = 0.30 \text{mm} \end{array}$

DISCLAIMER THE INFORMATION HEREIN IS GIVEN TO DESCRIBE CERTAIN COMPONENTS AND SHALL NOT BE CONSIDERED AS WARRANTED CHARACTERISTICS. NO RESPONSIBILITY IS ASSUMED FOR ITS USE; NOR FOR ANY INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES WHICH MAY RESULT FROM ITS USE. NO LICENSE IS GRANTED BY IMPLICATION OR OTHERWISE UNDER ANY PATENT OR PATENT RIGHTS OF EITHER MICROSS COMPONENTS OR FAIRCHILD SEMICONDUCTOR CORPORATION.

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

1. Life support devices or systems are devices or systems which,

(a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labelling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Further Information - Contact your Micross sales office or email your enquiry to baredie@micross.com