MOSFET - N-Channel, **Shielded Gate PowerTrench** 120 V, 2.95 mΩ, 181 A

FDP2D9N12C

Features

- Shielded Gate MOSFET Technology
- Max $R_{DS(on)} = 2.95 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 181 \text{ A}$
- 50% Lower Qrr than Other MOSFET Suppliers
- Lowers Switching Noise/EMI
- 100% UIL Tested
- These Devices are Pb-Free, Halogen-Free and are RoHS Compliant

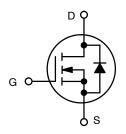
Typical Applications

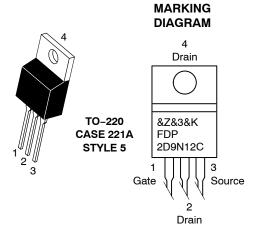
- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parar	Symbol	Value	Unit				
Drain-to-Source Voltag	V_{DSS}	120	٧				
Gate-to-Source Voltage	9		V _{GS}	±20	V		
Continuous Drain Current $R_{\theta JC}$ (Note 2)	Steady - asso		Steady T _C = 25°C		I _D	181	Α
Power Dissipation $R_{\theta JC}$ (Note 2)	State	1C = 25 C	P _D	179	W		
Continuous Drain Current $R_{\theta JA}$ (Notes 1, 2)	Steady State			19.5	Α		
Power Dissipation R _{θJA} (Notes 1, 2)	Oldic		P _D	2.0	W		
Pulsed Drain Current	$T_A = 25^\circ$	°C, t _p = 10 μs	I _{DM}	933	Α		
Operating Junction and Range	T _J , T _{stg}	-55 to +150	°C				
Source Current (Body D	I _S	172	Α				
Single Pulse Drain-to-S Energy (I _{AV} = 99 A _{pk} , L	E _{AS}	490	mJ				
Lead Temperature Solde ing Purposes (1/8" from	TL	300	°C				

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz. Cu pad.
- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.


ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
120 V	2.95 m Ω @ 10 V	181 A

N-CHANNEL MOSFET

&Z = Assembly Plant Code &3 = Date Code (Year & Week)

&K

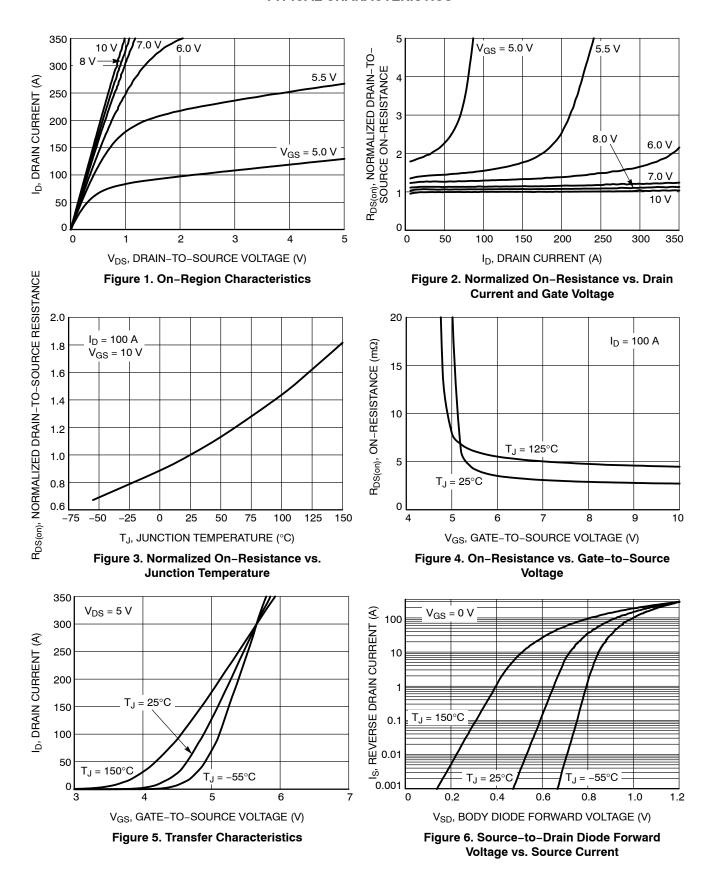
ORDERING INFORMATION

	Device	Package	Shipping [†]
FDP2	D9N12C	TO-220 (Pb-Free)	50 / Tube, 800 / Box

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Case - Steady State (Note 2)	$R_{ hetaJC}$	0.7	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{ hetaJA}$	62.5	


oifiod)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS					•		
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		120			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			46		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V,	T _J = 25°C			1	μΑ
		V _{DS} = 96 V	T _J = 150°C			100	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	- 664 μA	2.0	3.1	4.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 664 μA, ref	to 25°C		-8.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D	= 95 A		2.7	2.95	mΩ
		V _{GS} = 6 V, I _D	= 57 A		3.5	5.1	mΩ
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 50 A			215		S
CHARGES, CAPACITANCES & GATE RESIS	STANCE				•		
Input Capacitance	C _{ISS}				7910	12883	
Output Capacitance	Coss	V _{GS} = 0 V, f = 1 MHz		3825		pF	
Reverse Transfer Capacitance	C _{RSS}			32			
Gate-Resistance	R_{G}				0.78	1.9	Ω
Total Gate Charge	Q _{G(TOT)}				98	137	
Threshold Gate Charge	Q _{G(TH)}				23		
Gate-to-Source Charge	Q _{GS}	V _{GS} = 10 V, V _{DS} = 60	0 V; I _D = 95 A		35		nC
Gate-to-Drain Charge	Q_{GD}				15		
Plateau Voltage	V_{GP}				5.0		V
Output Charge	Q _{OSS}	V _{DD} = 60 V, V _G	iS = 0 V		325		nC
SWITCHING CHARACTERISTICS (Note 4)				I			
Turn-On Delay Time	t _{d(ON)}				43		
Rise Time	t _r	Voc = 10 V Voc	60 V		31		1
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 10 V, V_{DD} = 60 V, I_{D} = 95 A, R_{G} = 6.0 Ω			72		ns
Fall Time	t _f				24		
DRAIN-SOURCE DIODE CHARACTERISTIC	s				1		
Forward Diode Voltage	V_{SD}	V _{GS} = 0 V, I _S = 95 A	T _J = 25°C		0.9	1.3	V
Reverse Recovery Time	t _{RR}		1		88		
Charge Time	t _a	Voc - 0 V V	- 60 V		48		ns
Discharge Time	t _b	V_{GS} = 0 V, V_{DD} dI_S/dt = 300 A/ μ s,	I _S = 100 A		40		1
	. ~						

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.

^{4.} Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

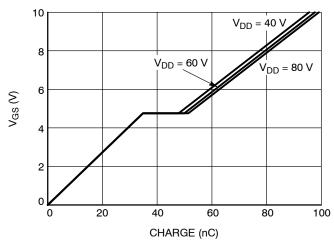


Figure 7. Gate Charge Characteristics

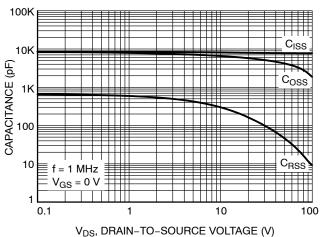


Figure 8. Capacitance vs. Drain-to-Source

Voltage

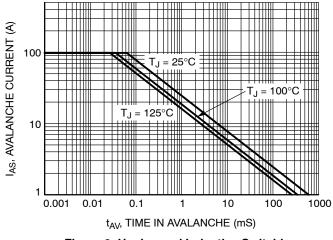


Figure 9. Unclamped Inductive Switching Capability

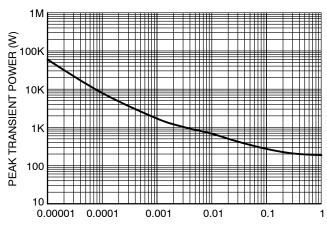


Figure 10. Peak Power

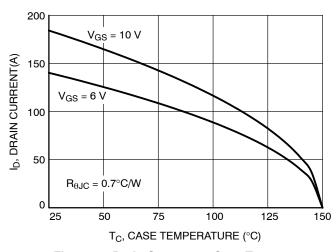


Figure 11. Drain Current vs. Case Temperature

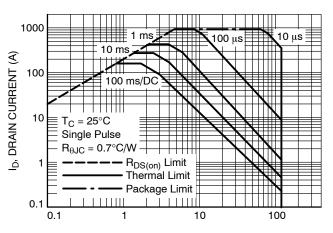


Figure 12. Forward Bias Safe Operating Area

TYPICAL CHARACTERISTICS

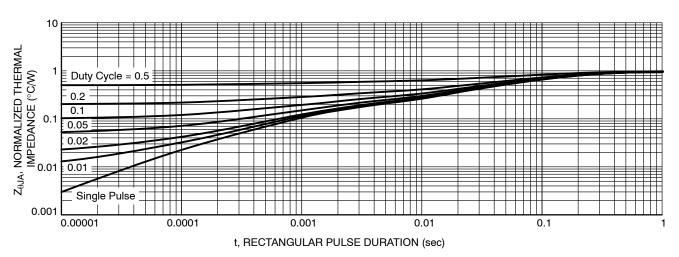
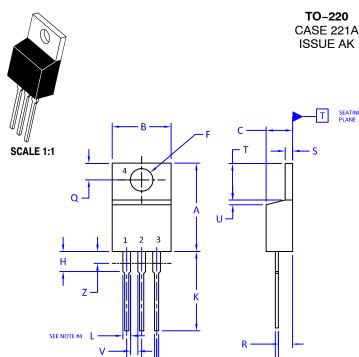



Figure 13. Transient Thermal Impedance

CASE 221A

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMI	ETERS
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	BASE COLLECTOR EMITTER COLLECTOR	STYLE 2: PIN 1. 2. 3. 4.		STYLE 3: PIN 1. 2. 3. 4.	CATHODE ANODE GATE ANODE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	GATE DRAIN SOURCE DRAIN	STYLE 6: PIN 1. 2. 3. 4.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.	GATE COLLECTOR EMITTER COLLECTOR	STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.		STYLE 12 PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales