

FDS4897C

Dual N & P-Channel PowerTrench® MOSFET

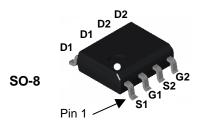
General Description

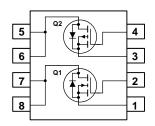
These dual N- and P-Channel enhancement mode power field effect transistors are produced using Fairchild Semiconductor's advanced PowerTrench process that has been especially tailored to minimize on-state resistance and yet maintain superior switching performance.

Application

- Inverter
- Power Supplies

Features


Q1: N-Channel


6.2A, 40V
$$R_{DS(on)} = 29m\Omega @ V_{GS} = 10V$$

$$R_{DS(on)} = 36m\Omega @ V_{GS} = 4.5V$$

Q2: P-Channel

$$-4.4A$$
, $-40V$ R_{DS(on)} = $46mΩ$ @ V_{GS} = $-10V$
R_{DS(on)} = $63mΩ$ @ V_{GS} = $-4.5V$

- High power handling capability in a widely used surface mount package
- RoHS compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

O A					
Symbol	Parameter		Q1	Q1 Q2	
V _{DSS}	Drain-Source Voltage		40	40	V
V _{GSS}	Gate-Source Voltage		±20	±20	V
I _D	Drain Current - Continuous	(Note 1a)	6.2	-4.4	Α
	- Pulsed		20	-20	
P _D	Power Dissipation for Dual Operation			2	W
	Power Dissipation for Single Operation	(Note 1a)	1	.6	
		(Note 1b)		1	
		(Note 1c)	C).9	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	o +150	°C

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
R _{eJC}	Thermal Resistance, Junction-to-Case	(Note 1)	40	°C/W

Package Marking and Ordering Information

		J			
Device Marking		Device	Reel Size	Tape width	Quantity
	FDS4897C	FDS4897C	13"	12mm	2500 units

Symbo	Parameter	Test Conditions	Type	Min	Тур	Max	Units
Drain-S	Source Avalanche Rating	S (Note 3)					
E _{AS}	Drain-Source Avalanche	$V_{DD} = 40 \text{ V}, I_D = 7.3 \text{ A}, L = 1 \text{ mH}$	Q1			27	mJ
	Energy (Single Pulse)	$V_{DD} = -40 \text{ V}, I_D = -8.7 \text{ A}, L = 1 \text{ mH}$	Q2			38	mJ
I _{AS}	Drain-Source Avalanche Current		Q1 Q2		7.3 –8.7		Α
Off Cha	racteristics						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A} \\ V_{GS} = 0 \text{ V}, \qquad I_{D} = -250 \mu\text{A}$	Q1 Q2	40 -40			V
∆BV _{DSS}	Breakdown Voltage	I _D = 250 μA, Referenced to 25°C	Q1		34		mV/°C
ΔT_J	Temperature Coefficient	$I_D = -250 \mu A$, Referenced to $25^{\circ}C$	Q2		-40		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 32 \text{ V}, \qquad V_{GS} = 0 \text{ V} $ $V_{DS} = -32 \text{ V}, \qquad V_{GS} = 0 \text{ V}$	Q1 Q2			1 -1	μА
I _{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$	All			±100	nA
On Cha	racteristics (Note 2)		l .	L	l	ı	l .
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS},$ $I_{D} = 250 \ \mu A$ $V_{DS} = V_{GS},$ $I_{D} = -250 \ \mu A$	Q1 Q2	1 -1	1.9 -1.7	3 -3	V
$\Delta V_{GS(th)}$	Gate Threshold Voltage	I _D = 250 μA, Referenced to 25°C	Q1		- 5		mV/°C
ΔT_{J}	Temperature Coefficient	$I_D = -250 \mu\text{A}$, Referenced to 25°C	Q2		4		
$R_{DS(on)}$	Static Drain-Source On-Resistance	$ \begin{aligned} &V_{GS} = 10 \text{ V}, & I_D = 6.2 \text{ A} \\ &V_{GS} = 4.5 \text{ V}, & I_D = 4.8 \text{ A} \\ &V_{GS} = 10 \text{ V}, & I_D = 6.2 \text{ A}, T_J = 125^{\circ}\text{C} \end{aligned} $	Q1		21 26 29	29 36 43	mΩ
		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Q2		37 50 55	46 63 73	
g FS	Forward Transconductance	$V_{DS} = 10 \text{ V},$ $I_{D} = 6.2 \text{ A}$ $V_{DS} = -10 \text{ V},$ $I_{D} = -4.4 \text{ A}$	Q1 Q2		21 12		S
Dvnami	ic Characteristics						
C _{iss}	Input Capacitance	Q1 V _{DS} = 20 V, V _{GS} = 0 V, f = 1.0 MHz	Q1 Q2		760 1050		pF
						1	
C _{oss}	Output Capacitance	Q2	Q1 Q2		100 140		pF
C _{oss}	Output Capacitance Reverse Transfer Capacitance	Q2 $V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$					pF pF

Electrical Characteristics (continued) T _A = 25°C unless otherwise noted							
Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Switchir	ng Characteristics (Note	2)					
$t_{d(on)}$	Turn-On Delay Time	Q1 $V_{DD} = 20 \text{ V}, I_{D} = 1 \text{ A},$	Q1 Q2		9 12	18 22	ns
t _r	Turn-On Rise Time	$V_{GS} = 10V$, $R_{GEN} = 6 \Omega$	Q1 Q2		5 15	10 27	ns
$t_{\text{d(off)}}$	Turn-Off Delay Time	Q2 $V_{DD} = -20 \text{ V}, I_D = -1 \text{ A},$	Q1 Q2		23 45	37 72	ns
t _f	Turn-Off Fall Time	$V_{GS} = -10V$, $R_{GEN} = 6 \Omega$	Q1 Q2		3 18	6 32	ns
Qg	Total Gate Charge	Q1 $V_{DS} = 20 \text{ V}, I_D = 6.2 \text{ A}, V_{GS} = 10 \text{ V}$	Q1 Q2		14 20	20 28	nC
Q_{gs}	Gate-Source Charge	Q2	Q1 Q2		2.4		nC
Q_{gd}	Gate-Drain Charge	$V_{DS} = -20 \text{ V}, I_{D} = -4.4 \text{ A}, V_{GS} = -10 \text{ V}$	Q1 Q2		2.8 4		nC
Drain-S	Source Diode Character	ristics					
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 1.3 \text{ A}$ (Note 2) $V_{GS} = 0 \text{ V}, I_S = -1.3 \text{ A}$ (Note 2)	Q1 Q2		0.7 -0.7	1.2 -1.2	V
t _{rr}	Diode Reverse Recovery Time	Q1 $I_F = 6.2 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$	Q1 Q2		17 24		ns
Q _{rr}	Diode Reverse Recovery Charge	Q2 $I_F = -4.4 \text{ A}, d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$	Q1 Q2		7 12		nC

Notes:

 R_{aJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{aJC} is guaranteed by design while R_{aCA} is determined by the user's board design.

a) 78°C/W when mounted on a 0.5 in² pad of 2 oz copper

b) 125°C/W when mounted on a .02 in² pad of 2 oz copper

c) 135°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

- 2. Pulse Test: Pulse Width < $300\mu s$, Duty Cycle < 2.0%
- 3. BV(avalanche) Single-Pulse rating is guaranteed by design if device is operated within the UIS SOA boundary of the device.

Typical Characteristics: Q1 (N-Channel)

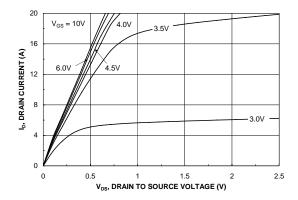


Figure 1. On-Region Characteristics.

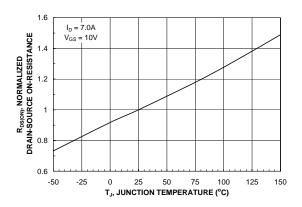


Figure 3. On-Resistance Variation with Temperature.

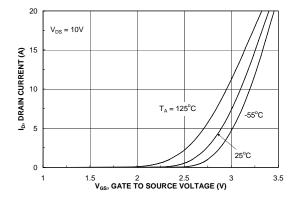


Figure 5. Transfer Characteristics.

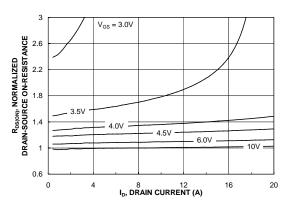


Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

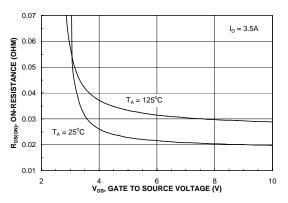


Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

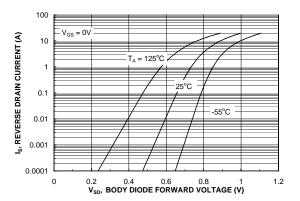


Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q1 (N-Channel)

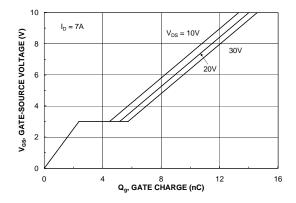


Figure 7. Gate Charge Characteristics.

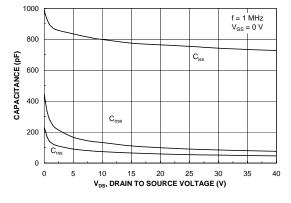


Figure 8. Capacitance Characteristics.

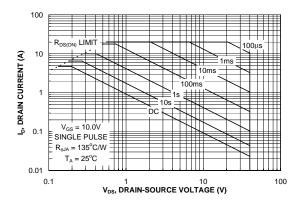


Figure 9. Maximum Safe Operating Area.

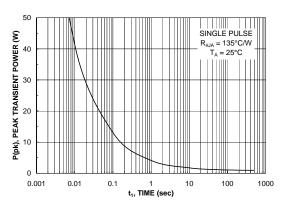


Figure 10. Single Pulse Maximum Power Dissipation.

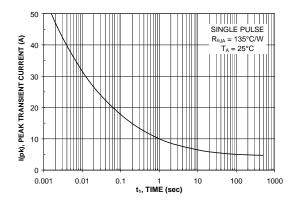


Figure 11. Single Pulse Maximum Peak Current.

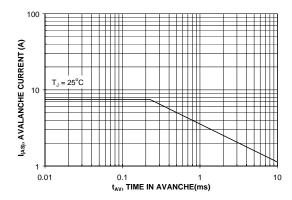


Figure 12. Unclamped Inductive Switching Capability.

Typical Characteristics: Q2 (P-Channel)

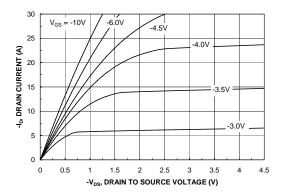


Figure 13. On-Region Characteristics.

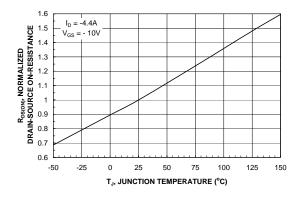


Figure 15. On-Resistance Variation with Temperature.

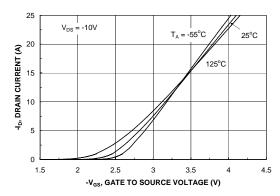


Figure 17. Transfer Characteristics.

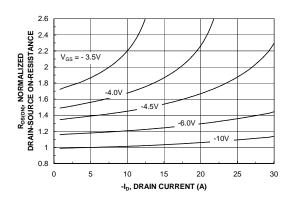


Figure 14. On-Resistance Variation with Drain Current and Gate Voltage.



Figure 16. On-Resistance Variation with Gate-to-Source Voltage.

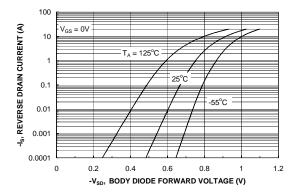


Figure 18. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics: Q2 (P-Channel)

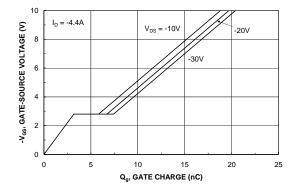


Figure 19. Gate Charge Characteristics.

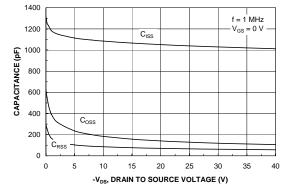


Figure 20. Capacitance Characteristics.

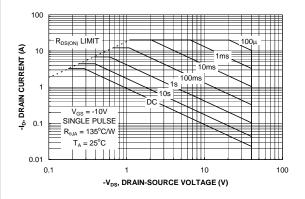


Figure 21. Maximum Safe Operating Area.

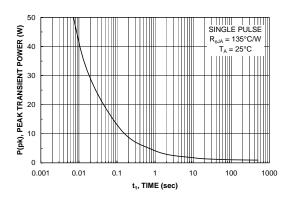


Figure 22. Single Pulse Maximum Power Dissipation.

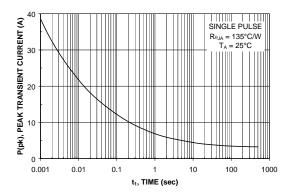


Figure 23. Single Pulse Maximum Peak Current

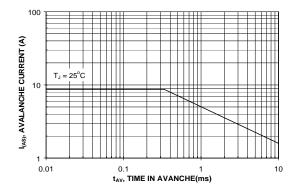


Figure 24. Unclamped Inductive Switching Capability

Typical Characteristics: N and P-Channel

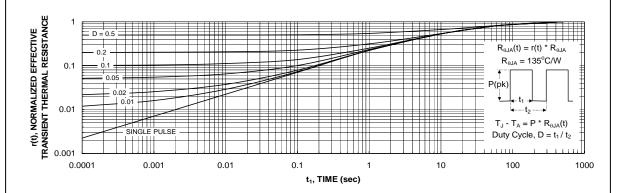


Figure 25. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ PowerSaver™ **FAST®** ISOPLANAR™ SuperSOT™-6 ActiveArray™ $\mathsf{PowerTrench}^{\circledR}$ SuperSOT™-8 $FASTr^{\intercal_{M}}$ LittleFET™ Bottomless™ FPS™ QFET[®] SyncFET™ MICROCOUPLER™ Build it Now™ $MicroFET^{TM}$ QSTM TinyLogic[®] FRFET™ TINYOPTO™ CoolFET™ MicroPak™ QT Optoelectronics™ GlobalOptoisolator™ TruTranslation™ $CROSSVOLT^{TM}$ MICROWIRE™ Quiet Series™ GTO^TM UHC™ RapidConfigure™ $\mathsf{DOME}^\mathsf{TM}$ MSX™ HiSeC™ UltraFET[®] $\mathsf{EcoSPARK}^{\mathsf{TM}}$ RapidConnect™ $MSXPro^{TM}$ I^2C^{TM} E²CMOSTM OCX^{TM} uSerDes™ UniFET™ i-Lo™ ScalarPump™ VCX^{TM} EnSigna™ $OCXPro^{TM}$ ImpliedDisconnect™ $\mathsf{OPTOLOGIC}^{\circledR}$ SILENT SWITCHER® FACT™ Wire™ IntelliMAX™ OPTOPLANAR™ SMART START™ FACT Quiet Series™ PACMAN™ SPM™ Across the board. Around the world.™ POP^{TM} Stealth™ The Power Franchise® Power247™ SuperFET™ Programmable Active Droop™ SuperSOT™-3 PowerEdge™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative