

ON Semiconductor®

FDS6675

Single P-Channel, Logic Level, PowerTrench™ MOSFET

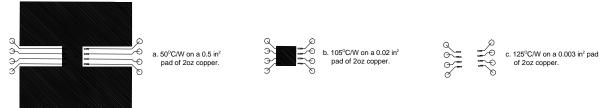
General Description

This P-Channel Logic Level MOSFET is produced using ON Semiconductor's advanced PowerTrench process that has been especially tailored to minimize the on-state resistance and yet maintain low gate charge for superior switching performance.

These devices are well suited for notebook computer applications: load switching and power management, battery charging circuits, and DC/DC conversion.

Features

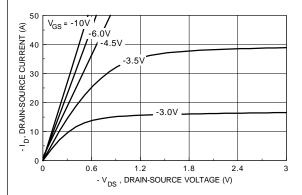
- -11 A, -30 V. $R_{DS(ON)}$ = 0.014 Ω @ V_{GS} = -10 V, $R_{DS(ON)}$ = 0.020 Ω @ V_{GS} = -4.5 V.
- Low gate charge (30nC typical).
- \blacksquare High performance trench technology for extremely low $R_{\text{DS(ON)}}.$
- High power and current handling capability.


Absolute Maximum Ratings

 $T_A = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		FDS6675	Units
V _{DSS}	Drain-Source Voltage		-30	V
V _{GSS}	Gate-Source Voltage		±20	V
D	Drain Current - Continuous	(Note 1a)	-11	А
	- Pulsed		-50	
$P_{\scriptscriptstyle D}$	Power Dissipation for Single Operation	(Note 1a)	2.5	W
		(Note 1b)	1.2	
		(Note 1c)	1	
J,T _{STG}	Operating and Storage Temperature Rang	je	-55 to 150	.€
THERMA	L CHARACTERISTICS	••••••••••••••••••••••••••••••••••••••		<u> </u>
R _{eJA}	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
₹ _{euc}	Thermal Resistance, Junction-to-Case	(Note 1)	25	°C/W

Symbol	Parameter	Conditions		Min	Тур	Max	Units
OFF CHAF	RACTERISTICS						
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$		-30			V
Δ BV _{DSS} / Δ T _J	Breakdown Voltage Temp. Coefficient	$I_D = -250 \mu\text{A}$, Referenced to	o 25 °C		-22		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -24 \text{ V}, \ V_{GS} = 0 \text{ V}$				-1	μA
			T _J = 55°C			-10	μA
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA
ON CHARA	ACTERISTICS (Note 2)	<u>.</u>			•	•	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$		-1	-1.7	-3	V
$\Delta V_{GS(th)}/\Delta T_{J}$	Gate Threshold Voltage Temp. Coefficient	$I_D = 250 \mu\text{A}$, Referenced to	25 °C		4.3		mV/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, I_{D} = -11 \text{ A}$			0.011	0.014	Ω
			T _J =125°C		0.016	0.023	
		$V_{GS} = -4.5 \text{ V}, I_{D} = -9 \text{ A}$			0.015	0.02	
I _{D(ON)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, \ V_{DS} = -5 \text{ V}$		-50			Α
g _{FS}	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -11 \text{ A}$			32		S
DYNAMIC	CHARACTERISTICS						
C _{iss}	Input Capacitance	$V_{DS} = -15 \text{ V}, \ V_{GS} = 0 \text{ V},$			3000		pF
C _{oss}	Output Capacitance	f = 1.0 MHz			870		pF
C _{rss}	Reverse Transfer Capacitance			360		pF	
SWITCHIN	G CHARACTERISTICS (Note 2)						
t _{D(on)}	Turn - On Delay Time	$V_{DS} = -15 \text{ V}, I_{D} = -1 \text{ A}$			12	22	ns
t,	Turn - On Rise Time	$V_{GEN} = -10 \text{ V}, R_{GEN} = 6 \Omega$			16	27	ns
t _{D(off)}	Turn - Off Delay Time				50	80	ns
t,	Turn - Off Fall Time				100	140	ns
Q_g	Total Gate Charge	$V_{DS} = -15 \text{ V}, I_{D} = -11 \text{ A},$			30	42	nC
Q_{gs}	Gate-Source Charge	V _{GS} = -5 V			9		nC
Q_{gd}	Gate-Drain Charge				11		nC
DRAIN-SO	URCE DIODE CHARACTERISTICS AND MA	XIMUM RATINGS					
I _s	Maximum Continuous Drain-Source Diode Fo	orward Current				-2.1	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = -2.1 \text{ A}$ (Note	2)		-0.72	-1.2	V


^{1.} $R_{g,u}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{g,c}$ is guaranteed by design while R_{gCA} is determined by the user's board design.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

Typical Electrical Characteristics

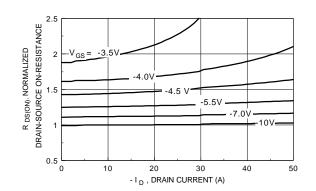
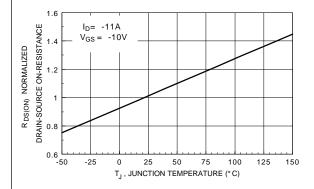



Figure 1. On-Region Characteristics.

Figure 2. On-Resistance Variation with Dain Current and Gate Voltage.

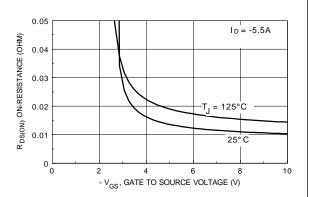
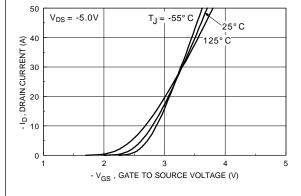



Figure 3. On-Resistance Variation with Temperature.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

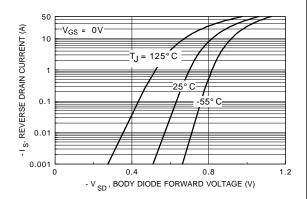
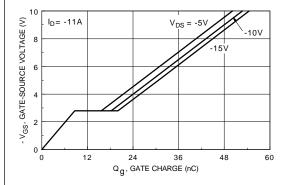



Figure 5. Transfer Characteristics.

Figure 6. Body Diode Forward Voltage
Variation with Source Current
and Temperature.

Typical Electrical Characteristics (continued)

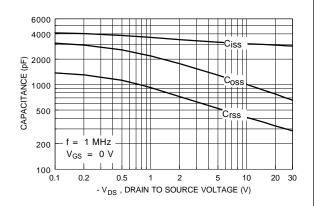
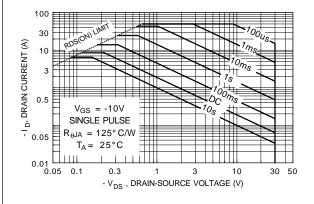



Figure 7. Gate Charge Characteristics.

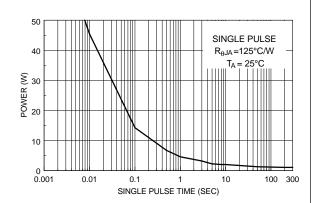
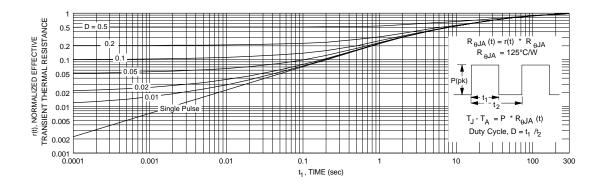
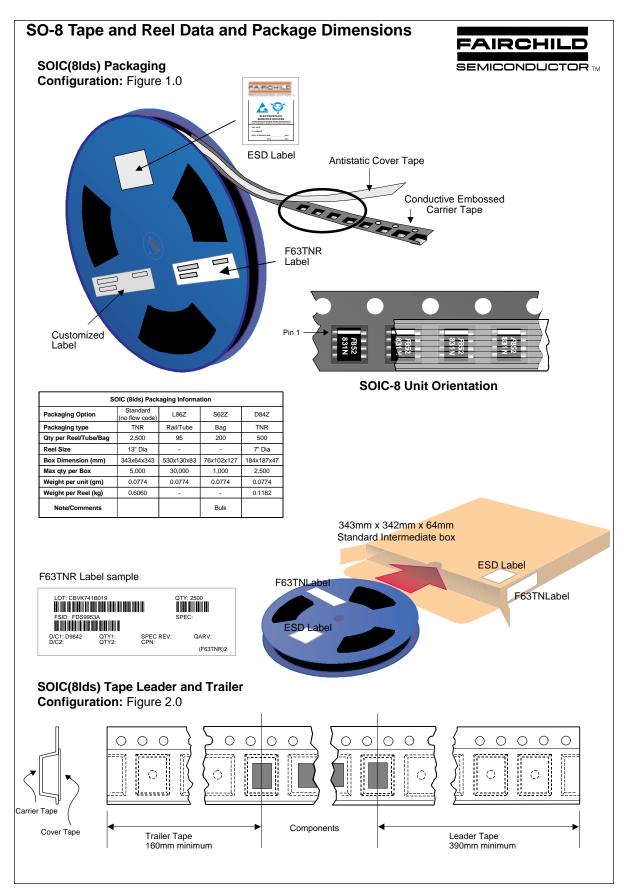
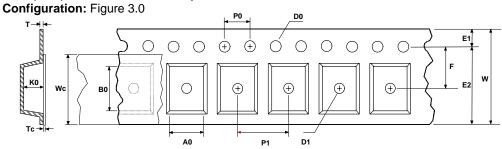


Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

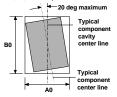




Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

SO-8 Tape and Reel Data and Package Dimensions, continued

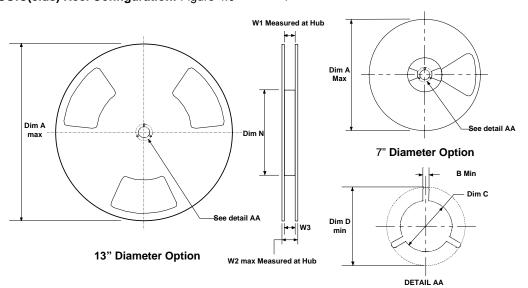
SOIC(8lds) Embossed Carrier Tape



Dimensions are in millimeter														
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SOIC(8lds) (12mm)	6.50 +/-0.10	5.30 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.1 +/-0.10	0.450 +/- 0.150	9.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

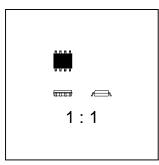
Sketch A (Side or Front Sectional View)
Component Rotation


Sketch B (Top View)
Component Rotation

Sketch C (Top View)

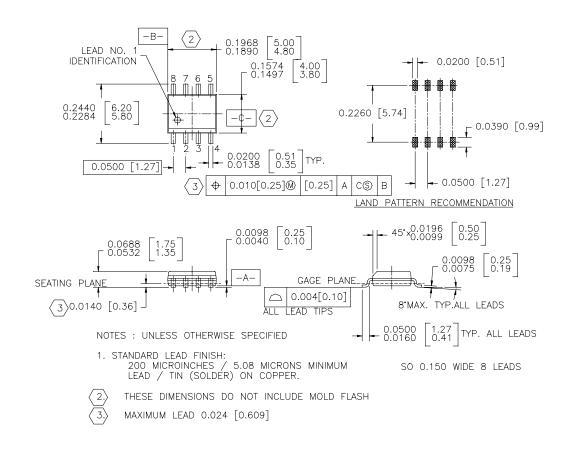
Component lateral movement


SOIC(8lds) Reel Configuration: Figure 4.0



Dimensions are in inches and millimeters										
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)	
12mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	5.906 150	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4	
12mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	7.00 178	0.488 +0.078/-0.000 12.4 +2/0	0.724 18.4	0.469 - 0.606 11.9 - 15.4	

SO-8 Tape and Reel Data and Package Dimensions, continued


SOIC-8 (FS PKG Code S1)

Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.0774

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative