

Features

- Optimized for Low-Voltage Core ICs in Portable Systems
- Very Small Package Dimension: WLCSP 0.8 X 0.8 X 0.5 mm³
- Current = 1.2 A, VIN max = 4 V
- Current = 2 A, VIN max = 4 V (Pulsed)
- $R_{DS(on)} = 80 \text{ m}\Omega \text{ at } V_{ON} = V_{IN} = 4 \text{ V}$
- R_{DS(on)} = 85 mΩ at V_{ON} = V_{IN} = 3.6 V
- $R_{DS(on)} = 90 \text{ m}\Omega \text{ at } V_{ON} = V_{IN} = 3 \text{ V}$
- $R_{DS(on)} = 110 \text{ m}\Omega \text{ at } V_{ON} = 0.7 \text{ V}, V_{IN} = 1.6 \text{ V}$
- $R_{DS(on)} = 309 \text{ m}\Omega \text{ at } V_{ON} = 0.7 \text{ V}, \text{ V}_{IN} = 1 \text{ V}$
- RoHS Compliant

Description

This device is particularly suited for compact power management in portable applications needing 1 V to 4 V input and 1.2 A output current capability. This load switch integrated a level-shifting function that drives a P-channel power MOSFET in a very small 0.8 X 0.8 X 0.5 mm³ WLCSP package.

Applications

- Load Switch
- Power Management in Portable Applications

Figure 2. Top View

Ordering Information

Part Number	Device Mark	Ball Pitch	Operating Temperature Range	Switch	Package	Packing Method
FDZ1040L	ZL	0.4 mm	-40 to 85°C	80 m, P-Channel MOSFET	0.8 x 0.8 x 0.5 mm ³ WLCSP	Tape & Reel

Pin #	Name	Description	
A1	VIN	upply Input: Input to the load switch	
A2	VOUT	witch Output: Output of the load switch	
B1	ON	N/OFF Control Input, Active High	
B2	GND	Ground	

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter			Max.	Unit
V _{IN}	Voltage on VIN, VOUT, ON to GND			4.2	V
I _{OUT_C}	I _{OUT} -Load Current (Continuous) ^(1a)			1.2	А
I _{OUT_P}	I _{OUT} -Load Current (Pulsed)			2	А
PD	Power Dissipation at $T_A = 25^{\circ}C^{(1a)}$			0.9	W
T _A	Operating Temperature Range			85	°C
T _{STG}	Storage Temperature			150	°C
R _{OJA}	Thermal Resistance, Junction to Ambient ^(1a)			135	°C/W
ESD	Electrostatio Discharge Capability	Human Body Model, JESD22-A114	8		k)/
	Charged Device Model, JESD22-C101		2		ĸv

Notes:

 RΘ_{JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RΘ_{JC} is guaranteed by design, while RΘ_{JA} is determined by the board design.

- a. 117°C/W when mounted on a 1-inch square pad of 2-oz copper.
- 2. Pulse test: pulse width < 300 μ s; duty cycle < 2.0%.

b. 277°C/W when mounted on a minimum pad of 2-oz copper.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Voltage on VIN Pin	1	4	V
V _{ON}	Voltage on ON Pin	0.7	4.0	V
T _A	Operating Temperature Range		85	°C

Electrical Characteristics

 $T_J = 25^{\circ}C$ unless otherwise noted.

Symbol	Parameter	Test Conditions		Тур.	Max.	Unit
V _{IN}	Operation Voltage		1		4	V
VIL	ON Input Logic Low Voltage	$1.6 \text{ V} \le \text{V}_{\text{IN}} \le 4 \text{ V}$			0.35	V
	ON Input Logic Low Voltage	$1 \text{ V} \leq \text{V}_{\text{IN}} \leq 1.6 \text{ V}$			0.25	V
M	ON Input Logic Lligh Voltage	$1.6 \text{ V} \le \text{V}_{\text{IN}} \le 4 \text{ V}$	1.0			V
VIH	ON Input Logic High Voltage	$1 \text{ V} \leq \text{V}_{\text{IN}} \leq 1.6 \text{ V}$	0.7			
Ι _Q	Quiescent Current	$V_{IN} = V_{ON} = 1.8 \text{ V}, V_{OUT} = Float$			1	μA
I _{Q(off)}	Off Supply Current	V_{IN} = 1.8 V, V_{ON} = GND, V_{OUT} = Float			1	μA
I _{SD(off)}	Off Switch Leakage Current	$V_{\text{IN}} = 1.8 \text{ V}, V_{\text{ON}} = G \text{ND}, V_{\text{OUT}} = 0 \text{ V}$			100	nA
R _{PD}	Output Discharge Pull-Down Resistance			200		Ω
I _{ON}	ON Input Leakage	$V_{ON} = V_{IN} \text{ or } GND$			1	μA
		$V_{ON} = V_{IN} = 4 \text{ V}, I_{OUT} = 300 \text{ mA}$		48	80	
		V _{ON} = V _{IN} = 3.6 V, I _{OUT} = 300 mA V _{ON} = V _{IN} = 3 V, I _{OUT} = 300 mA		49	85	
R _{DS(ON)}	Static Drain-Source On-Resistance			51	90	
		$V_{ON} = 0.7 \text{ V}, V_{IN} = 1.6 \text{ V}, I_{OUT} = 300 \text{ mA}$		70	110	mc2
		$V_{ON}=0.7~V,~V_{IN}=1~V,~I_{OUT}=300~mA$		142	309	
		$V_{IN} = 3.6 \text{ V}, I_{OUT} = 300 \text{ mA}, T_J = 85^{\circ}\text{C}$	= 3.6 V, I _{OUT} = 300 mA, T _J = 85°C 59		120	

Switching Characteristics

Symbol	Parameter	Test Conditions	Typical	Unit
t _{d(on)}	Turn-On Delay		22	μs
tr	Turn-On Rise Time	$V_{IN} = 1.6 \text{ V}, V_{ON} = 0.7 \text{ V}, C_L = 1 \ \mu\text{F}, R_L = 500 \ \Omega$	23	μs
t _{d(off)}	Turn-Off Delay		127	μs
t _f	Turn-Off Fall Time		298	μs
t _{d(on)}	Turn-On Delay		37	μs
tr	Turn-On Rise Time		35	μs
t _{d(off)}	Turn-Off Delay	$v_{\rm IN} = 1 v, v_{\rm ON} = 1.8 v, C_{\rm L} = 1 \mu F, R_{\rm L} = 500 \Omega_{\rm L}$	161	μs
t _f	Turn-Off Fall Time		544	μs
t _{d(on)}	Turn-On Delay		20	μs
tr	Turn-On Rise Time		22	μs
t _{d(off)}	Turn-Off Delay	$v_{\rm IN} = 1.8 v, v_{\rm ON} = 1.8 v, C_{\rm L} = 1 \mu \text{F}, R_{\rm L} = 500 \Omega$	136	μs
t _f	Turn-Off Fall Time		272	μs
t _{d(on)}	Turn-On Delay		15	μs
tr	Turn-On Rise Time		20	μs
t _{d(off)}	Turn-Off Delay	$V_{\rm IN} = 2.5 \text{V}, V_{\rm ON} = 1.8 \text{V}, C_{\rm L} = 1 \mu\text{F}, R_{\rm L} = 500 \Omega$	168	μs
t _f	Turn-Off Fall Time		229	μs
t _{d(on)}	Turn-On Delay		13	μs
tr	Turn-On Rise Time		19	μs
t _{d(off)}	Turn-Off Delay $V_{IN} = 3.3 V, V_{ON} = 1.8 V, C_L = 1 \mu F, R$		202	μs
t _f	Turn-Off Fall Time		214	μs

Functional Description

The FDZ1040L is a low- $R_{\text{DS}(\text{ON})}$ P-channel load switch packaged in space-saving 0.8x0.8 WLCSP.

The core of the device is a 80 m Ω P-channel MOSFET capable of functioning over a wide input operating range

of 1-4 V. The ON pin, an active HIGH TTL-compatible input that supports input as low as 0.7 V, controls the state of the switch.

Input Capacitor

To reduce device inrush current effect, a 0.1 μ F ceramic capacitor, C_{IN}, is recommended close to the VIN pin. A higher value of C_{IN} can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

FDZ1040L works without an output capacitor. However, if parasitic board inductance forces V_{OUT} below GND when switching off, a 0.1 μF capacitor, C_{OUT}, should be placed between the VOUT and GND pins.

Product-Specific Dimensions

Product	D	E	X	Y	
FDZ1040L	0.8 ±0.03 mm	0.8 ±0.03 mm	0.21 mm	0.21 mm	

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: <u>http://www.fairchildsemi.com/packaging/</u>.

FAIRCHILD SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP[®]* BitSiC™ Build it Now™ CorePLUS™ **CorePOWER™** CROSSVOLT[™] CTI ™ Current Transfer Logic™ **DEUXPEED**[®] Dual Cool™ EcoSPARK[®] EfficientMax™ **ESBC™** F Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT[®] FAST[®]

FPSTM F-PFS™ FRFET® Global Power Resource GreenBridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Making Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC**® **OPTOPLANAR®**

® PowerTrench[®] PowerXS[™] Programmable Active Droop™ OFET OS™ Quiet Series™ RapidConfigure™ \bigcirc Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START Solutions for Your Success™ SPM[®] STEALTH SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™

TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® **TINYOPTO**TM TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT®* uSerDes™

UHC[®] Ultra FRFET™ UniFET™ VCX[™] VisualMax™ VoltagePlus™ XS™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FastvCore™

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 164

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC