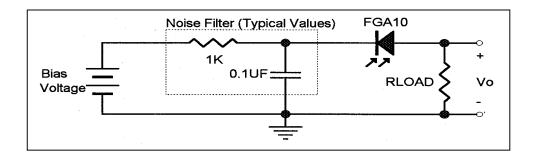


The Thorlabs FGA10 photodiode is ideal for measuring both pulsed and CW light sources, by converting the optical power to an electrical current. The InGaAs detector is housed in a TO-5 package with an anode, cathode and case connection. The photodiode anode produces a current which is a function of the incident light power and the wavelength. The responsivity $\Re(\lambda)$, can be read from Figure 1 to estimate the amount of photocurrent to expect. This can be converted to a voltage by placing a load resistor (R_{LOAD}) from the photodiode anode to the circuit ground. The output voltage is derived as:


$$Vo = P * \Re(\lambda) * R_{LOAD}$$

The bandwidth, f_{BW} , and the rise time response, T_R , are determined from the diode capacitance, C_J , and the load resistance, R_{LOAD} , as shown below. The diode capacitance can be lowered by placing a bias voltage from the photodiode cathode to the circuit ground. The effect of the bias voltage vs. Diode capacitance can be read from Figure 2.

$$f_{BW} = 1/(2\pi * R_{LOAD} * CJ), T_R = 0.35/f_{BW}$$

<u>Related Thorlabs Products</u> FDS010, FDS100, PDA55, PDA155, PDA255, PDA400, WS02, TM2448

Typical Circuit Diagram

Typical Plots

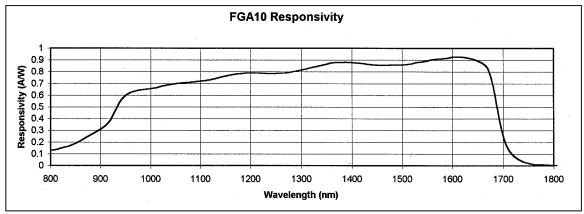


Figure 1

Figure 2