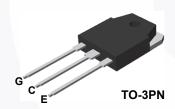
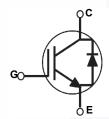


May 2015

FGA6065ADF 650 V, 60 A Field Stop Trench IGBT

Features


- Maximum Junction Temperature : $T_J = 175$ °C
- · Positive Temperaure Co-efficient for Easy Parallel Operating
- · High Current Capability
- Low Saturation Voltage: $V_{CE(sat)}$ = 1.8 V (Typ.) @ I_C = 60 A
- 100% of the Parts Tested for I_{LM} (1)
- · High Input Impedance
- · Fast Switching
- · RoHS Compliant


General Description

This ADF IGBT series adopted Field Stop Trench 3rd generation IGBT which offer extreme low Rds(on) and much faster switching characteristics for outstanding efficiency. And this kind of technology is fully optimized to variety PFC (Power Factor Correction) topology; Single boost, Multi channel interleaved etc with over 20KHz switching performance. TO3P package provide Super Low thermal resistance for much wider SOA for system stability.

Applications

- PFC topology for Home appliance: Single Boost, Multi channel Interleaved etc.
- · PFC Topology for Welder

Absolute Maximum Ratings

Symbol	Description		FGA6065ADF	Unit	
V _{CES}	Collector to Emitter Voltage	to Emitter Voltage		V	
V	Gate to Emitter Voltage		± 20	V	
V_{GES}	Transient Gate to Emitter Voltage		± 30	V	
I _C	Collector Current	@ T _C = 25°C	120	Α	
	Collector Current	@ T _C = 100°C	60	Α	
I _{LM (1)}	Pulsed Collector Current	@ T _C = 25°C	180	Α	
I _{CM (2)}	Pulsed Collector Current		180	Α	
I _F	Diode Forward Current	@ T _C = 25°C	60	Α	
	Diode Forward Current	@ T _C = 100°C	30	Α	
I _{FM (2)}	Pulsed Diode Maximum Forward Currer	120	А		
P _D Maximum Power Dissipation		@ T _C = 25°C	306	W	
י ט	Maximum Power Dissipation	@ T _C = 100°C	153	W	
T _J	Operating Junction Temperature		-55 to +175	°C	
T _{stg}	Storage Temperature Range		-55 to +175	°C	
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes

- 1. $\rm V_{CC}$ = 400 V, $\rm V_{GE}$ = 15 V, $\rm I_{C}$ =180 A, $\rm R_{G}$ = 48.4 $\Omega,$ Inductive Load
- 2. Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	FGA6065ADF	Unit	
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case, Max.	0.49	°C/W	
$R_{\theta JC}(Diode)$	Thermal Resistance, Junction to Case, Max.	1.75	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient, Max.	40	°C/W	

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGA6065ADF	FGA6065ADF	TO-3PN	Tube	-	-	30

Electrical Characteristics of the IGBT $T_C = 25^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	eteristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V_{GE} = 0V, I_C = 1 mA	650	-	-	V
ΔBV _{CES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	I _C = 1 mA, Reference to 25°C	-	0.6	-	V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μА
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	I _C = 60 mA, V _{CE} = V _{GE}	4.1	5.6	7.6	V
-()		I _C = 60 A, V _{GE} = 15 V	-	1.8	2.3	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 60 A, V _{GE} = 15 V, T _C = 175°C	-	2.3	-	V
Dynamic C	Characteristics					
C _{ies}	Input Capacitance		-	2419	-	pF
C _{oes}	Output Capacitance	V _{CE} = 30 V _, V _{GE} = 0 V, f = 1MHz	-	82	-	pF
C _{res}	Reverse Transfer Capacitance	1 - 11/11/2	-	31	-	pF
Switching	Characteristics					
t _{d(on)}	Turn-On Delay Time		T -	25.6	-	ns
t _r	Rise Time		-	67.2	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 60 \text{ A},$	-	71	-	ns
t _f	Fall Time	$R_G = 6 \Omega$, $V_{GE} = 15 V$,	-	22	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	2.46	/	mJ
E _{off}	Turn-Off Switching Loss		-	0.52	- //	mJ
E _{ts}	Total Switching Loss		-	2.98	-	mJ
t _{d(on)}	Turn-On Delay Time		-	22.4	-	ns
t _r	Rise Time		_	63.2	-	ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 400 \text{ V}, I_{C} = 60 \text{ A},$ $R_{G} = 6 \Omega, V_{GE} = 15 \text{ V},$	-	77	-	ns
t _f	Fall Time		-	22	-	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 175°C	-	3.19	-	mJ
E _{off}	Turn-Off Switching Loss		-	0.71	-	mJ
E _{ts}	Total Switching Loss		-	3.90	-	mJ

Electrical Characteristics of the IGBT (Continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
Qg	Total Gate Charge	V _{CE} = 400 V, I _C = 60 A, V _{GE} = 15 V	-	84	-	nC
Q _{ge}	Gate to Emitter Charge		-	15	-	nC
Q _{gc}	Gate to Collector Charge		-	32	-	nC

Electrical Characteristics of the Diode $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter		Test Conditions		Min.	Тур.	Max	Unit	
V _{FM}	Diode Forward Voltage	I _F =	30 A		T _C = 25°C	-	1.8	2.3	V
FM				Ī	T _C = 175°C	-	1.7	-	•
E _{rec}	Reverse Recovery Energy				T _C = 175°C	-	233	-	uJ
t	Diode Reverse Recovery Time	I _F = 30 A,	30 A, dI _F /dt = 200 A/μs	Ī	T _C = 25°C	-	110	-	ns
rt D	Blodd Novoldd Noddvoly Timo		30 A, αιριαί – 200 A/μ3	Ī	T _C = 175°C	-	271	-	110
Q _{rr}	Diode Reverse Recovery Charge			Ī	T _C = 25°C	-	400	-	nC
α _{II}	Blodd Novolod Nodovoly Charge			Ī	T _C = 175°C	-	1740	-	110

Figure 1. Typical Output Characteristics

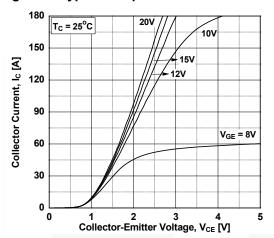


Figure 3. Typical Saturation Voltage Characteristics

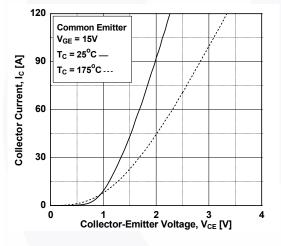
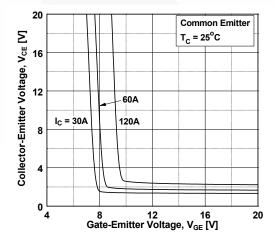



Figure 5. Saturation Voltage vs. V_{GE}

Figure 2. Typical Output Characteristics

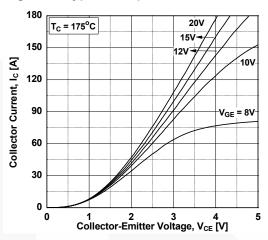


Figure 4. Saturation Voltage vs. Case
Temperature at Variant Current Level

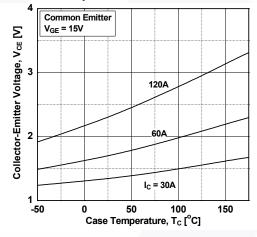


Figure 6. Saturation Voltage vs. V_{GE}

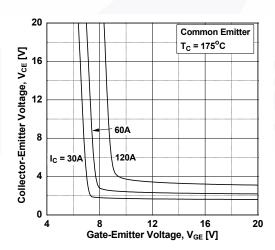


Figure 7. Capacitance Characteristics

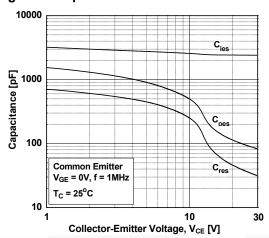


Figure 9. Turn-on Characteristics vs.
Gate Resistance

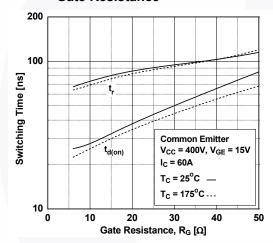


Figure 11. Switching Loss vs.
Gate Resistance

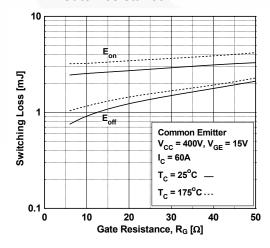


Figure 8. Gate charge Characteristics

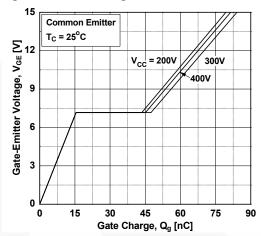


Figure 10. Turn-off Characteristics vs. Gate Resistance

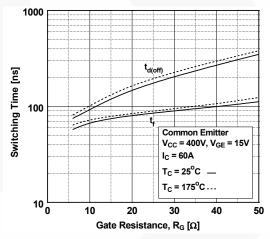


Figure 12. Turn-on Characteristics vs. Collector Current

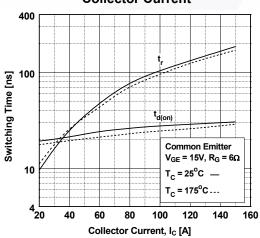


Figure 13. Turn-off Characteristics vs. Collector Current

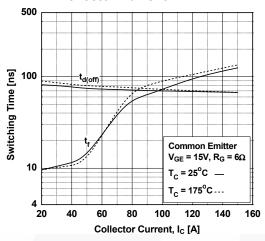


Figure 14. Switching Loss vs. Collector Current

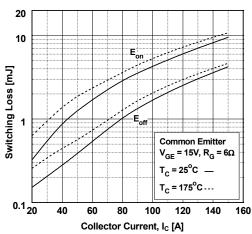


Figure 15. Load Current Vs. Frequency

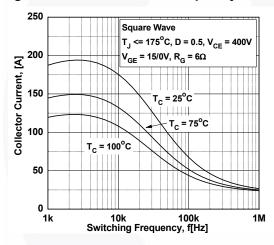


Figure 16. SOA Characteristics

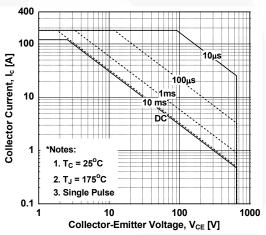


Figure 17. Forward Characteristics

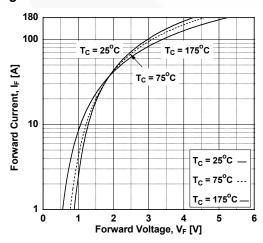


Figure 18. Reverse Recovery Current

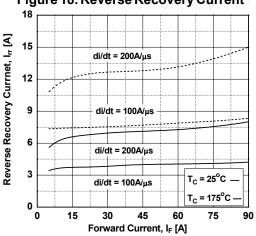


Figure 19. Reverse Recovery Time

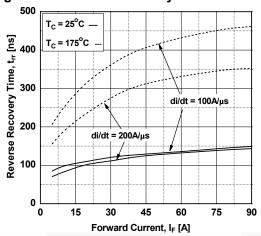


Figure 20. Stored Charge

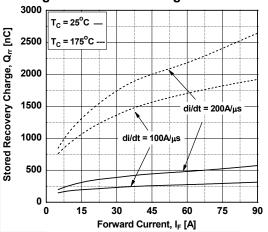


Figure 21.Transient Thermal Impedance of IGBT

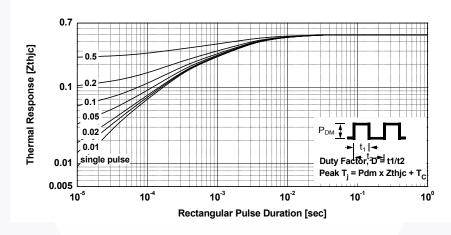
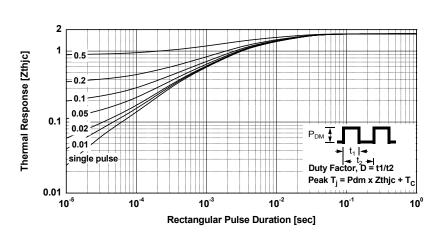
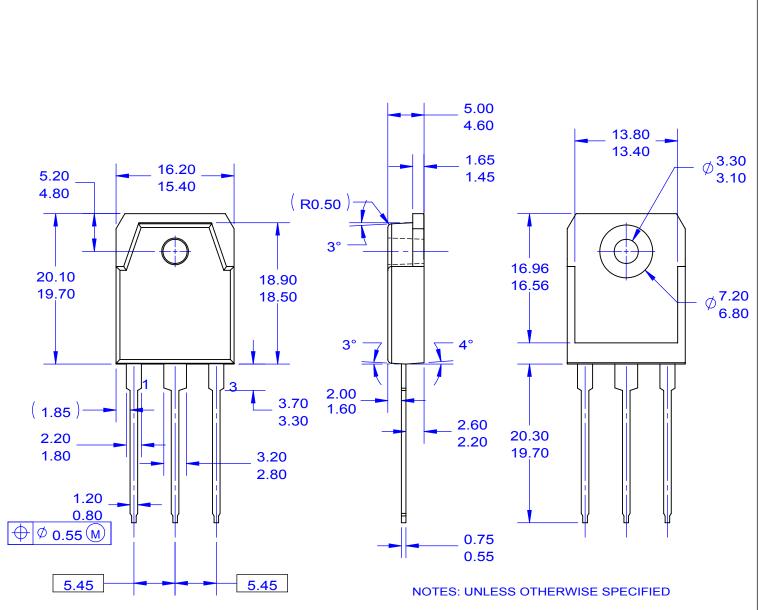
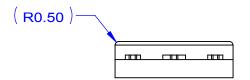





Figure 22. Transient Thermal Impedance of Diode

- A) THIS PACKAGE CONFORMS TO EIAJ SC-65 PACKAGING STANDARD.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSION AND TOLERANCING PER ASME14.5-2009.
- D) DIMENSIONS ARE EXCLUSSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSSIONS.
- E) DRAWING FILE NAME: TO3PN03AREV2.
- F) FAIRCHILD SEMICONDUCTOR.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative