Field Stop Trench IGBT, 20 A, 650 V

FGAF20S65AQ

Using novel field stop IGBT technology, ON Semiconductor's new series of field stop 4th generation of RC IGBTs offer the optimum performance for PFC applications and welder where low conduction and switching losses are essential.

Features

- Maximum Junction Temperature: T_J = 175°C
- Positive Temperature Co-efficient for Easy Parallel Operating
- High Current Capability
- Low Saturation Voltage: $V_{CE(Sat)} = 1.4 \text{ V (Typ.)}$ @ $I_C = 20 \text{ A}$
- 100% of the Parts Tested for I_{LM} (Note 1)
- High Input Impedance
- Fast Switching
- Tighten Parameter Distribution
- IGBT with Monolithic Reverse Conducting Diode
- This Device is Pb-Free and is RoHS Compliant

Typical Applications

• PFC, Welder

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector to Emitter Voltage	V _{CES}	650	V
Gate to Emitter Voltage Transient Gate to Emitter Voltage	V _{GES}	±20 ±30	V
Collector Current $@T_C = 25^{\circ}C$ $@T_C = 100^{\circ}C$	I _C	40 20	Α
Pulsed Collector Current (Note 1)	I _{LM}	60	Α
Pulsed Collector Current (Note 2)	I _{CM}	60	Α
Diode Forward Current @T _C = 25°C @ T _C = 100°C	IF	20 10	Α
Pulsed Diode Maximum Forward Current	I _{FM}	60	Α
Maximum Power Dissipation@ $T_C = 25^{\circ}C$ @ $T_C = 100^{\circ}C$	P _D	75 37	W
Operating Junction / Storage Temperature Range	T _J , T _{STG}	-55 to +175	°C
Maximum Lead Temp. for Soldering Purposes, 1/8" from case for 5 seconds	T_L	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. V_{CC} = 400 V, V_{GE} = 15 V, I_{C} = 60 A, R_{G} = 23 Ω , Inductive Load, 100% Tested
- 2. Repetitive rating: pulse width limited by max. Junction temperature

ON Semiconductor®

www.onsemi.com

20 A, 650 V $V_{CE(sat)} = 1.4 \text{ V (Typ.)}$

TO-3PF CASE 340AH

MARKING DIAGRAM

&Y = ON Semiconductor Logo = Designate space on marking &E

= 3-Digit Data Code &3

= 2-Digit Lot Traceability Code FGAF20S65AQ = Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGAF20S65AQ	TO-3PF-3L	30 Units / Rail

Table 1. THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case, for IGBT	$R_{ hetaJC}$	2	°C/W
Thermal Resistance, Junction-to-Case, for Diode	$R_{ heta JC}$	3.6	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ hetaJA}$	40	°C/W

Table 2. ELECTRICAL CHARACTERISTICS (T_{.1} = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTIC		•		•		•
Collector-emitter breakdown voltage, gate-emitter short-circuited	V _{GE} = 0 V, I _C = 1 mA	BV _{CES}	650	-	_	V
Temperature Coefficient of Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	ΔBV _{CES} / ΔΤ _J	-	0.5	_	V/°C
Collector-emitter cut-off current, gate- emitter short-circuited	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	250	μΑ
Gate leakage current, collector-emitter short-circuited	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	±400	nA
ON CHARACTERISTIC						
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 20$ mA	V _{GE(th)}	2.6	5.3	6.6	V
Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 20 A V _{GE} = 15 V, I _C = 20 A, T _J = 175°C	V _{CE(sat)}	- -	1.4 1.7	2.1 -	V
DYNAMIC CHARACTERISTIC						
Input capacitance	$V_{CE} = 30 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{ies}	-	1319	-	pF
Output capacitance		C _{oes}	-	21	-	
Reverse transfer capacitance	1	C _{res}	-	6	-	
Gate charge total	V _{CE} = 400 V, I _C = 20 A, V _{GE} = 15 V	Qg	-	38	-	nC
Gate to emitter charge	1	Q _{ge}	-	9	-	
Gate to collector charge	1	Q _{gc}	-	11	-	
SWITCHING CHARACTERISTIC, INDUC	TIVE LOAD					-
Turn-on delay time	T _J = 25°C	t _{d(on)}	-	16	_	ns
Rise time	$V_{CC} = 400 \text{ V}, I_{C} = 5 \text{ A}$	t _r	_	6.4	_	
Turn-off delay time	$R_g = 23 \Omega$ $V_{GE} = 15 V$	t _{d(off)}	-	109	_	1
Fall time	Inductive Load	t _f	-	27	_	
Turn-on switching loss	1	E _{on}	-	200	-	μJ
Turn-off switching loss	1	E _{off}	-	56	_	1
Total switching loss	1	E _{ts}	-	256	_	
Turn-on delay time	T _J = 25°C	t _{d(on)}	-	18	_	ns
Rise time	$V_{CC} = 400 \text{ V}, I_{C} = 10 \text{ A}$	t _r	-	11	-	1
Turn-off delay time	$R_g = 23 \Omega$ $V_{GE} = 15 V$	t _{d(off)}	-	102	-	1
Fall time	Inductive Load	t _f	-	21	-	1
Turn-on switching loss	1	E _{on}	-	345	-	μJ
Turn-off switching loss	1	E _{off}	-	95	-	1
Total switching loss		E _{ts}	_	440	_	1

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC, IN	IDUCTIVE LOAD		•	•	•	•
Turn-on delay time	T _J = 175°C	t _{d(on)}	_	14.4	_	ns
Rise time	V_{CC} = 400 V, I_{C} = 5 A R_{q} = 23 Ω	t _r	_	6.4	_	1
Turn-off delay time	$V_{GE} = 15 \text{ V}$	t _{d(off)}	-	118	-	
Fall time	Inductive Load	t _f	-	51	_	1
Turn-on switching loss		E _{on}	-	301	_	μJ
Turn-off switching loss		E _{off}	-	94	_	1
Total switching loss		E _{ts}	-	395	-	
Turn-on delay time	T _J = 175°C	t _{d(on)}	-	16	_	ns
Rise time	$V_{CC} = 400 \text{ V}, I_{C} = 10 \text{ A}$ $R_{g} = 23 \Omega$	t _r	-	12	_	1
Turn-off delay time	$N_{g} = 25.52$ $V_{GE} = 15 \text{ V}$	t _{d(off)}	-	114	_	1
Fall time	Inductive Load	t _f	-	46	_	1
Turn-on switching loss		E _{on}	-	466	_	μJ
Turn-off switching loss		E _{off}	-	177	_	1
Total switching loss		E _{ts}	-	643	_	1
DIODE CHARACTERISTIC						
Forward Voltage	I _F = 10 A I _F = 10 A, T _J = 175°C	V _F	-	1.3 1.3	1.6 -	V
Reverse Recovery Energy	I _F = 10 A, dI _F /dt = 200 A/μs	E _{rec}	-	179	_	μJ
Diode Reverse Recovery Time	$I_F = 10 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}$ $I_F = 10 \text{ A}, dI_F/dt = 200 \text{ A/}\mu\text{s}, T_J = 175^{\circ}\text{C}$	T _{rr}	-	235 302	-	nS
Diode Reverse Recovery Charge	$I_F = 10 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}$ $I_F = 10 \text{ A}, dI_F/dt = 200 \text{ A}/\mu\text{s}, T_J = 175^{\circ}\text{C}$	Q _{rr}	-	802 1286	-	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

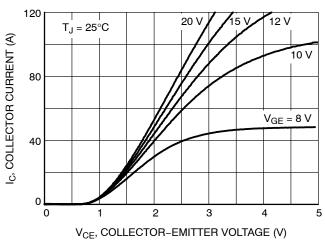


Figure 1. Typical Output Characteristics

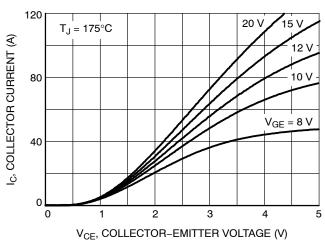


Figure 2. Typical Output Characteristics

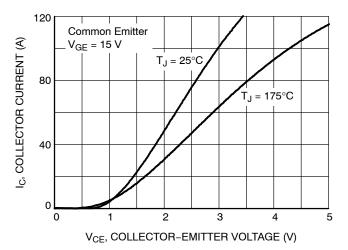


Figure 3. Typical Saturation Voltage Characteristics

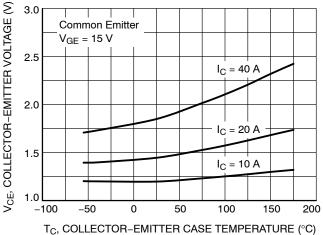


Figure 4. Saturation Voltage vs. Case Temperature at Variant Current Level

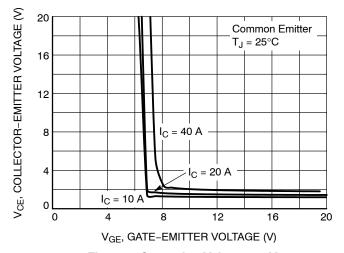


Figure 5. Saturation Voltage vs. V_{GE}

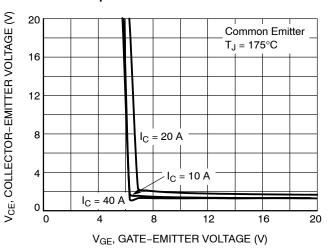


Figure 6. Saturation Voltage vs. V_{GE}

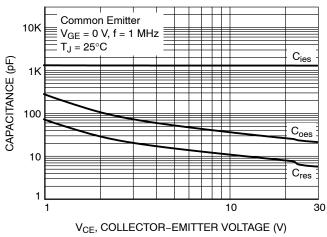


Figure 7. Capacitance Characteristics

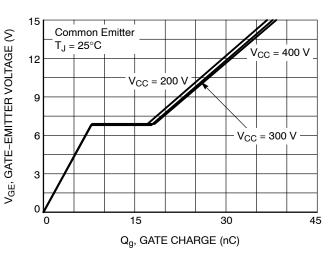


Figure 8. Gate Charge

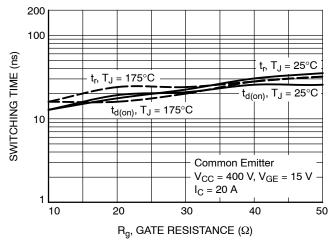


Figure 9. Turn-On Characteristics vs. Gate Resistance

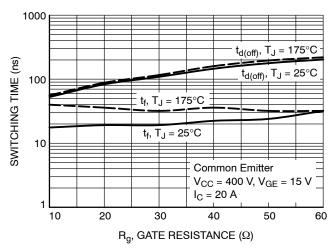


Figure 10. Turn-Off Characteristics vs. Gate Resistance

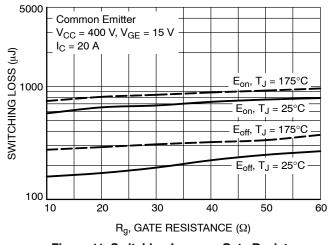


Figure 11. Switching Loss vs. Gate Resistance

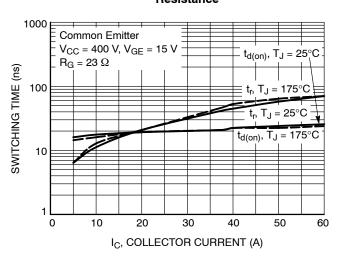


Figure 12. Turn-On Characteristics vs.
Collector Current

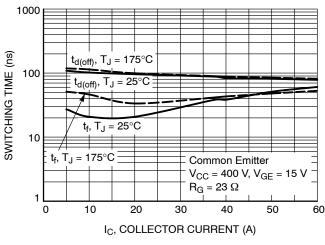


Figure 13. Turn-Off Characteristics vs.
Collector Current

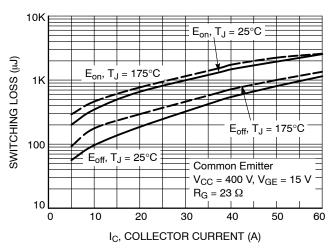


Figure 14. Switching Loss vs. Collector Current

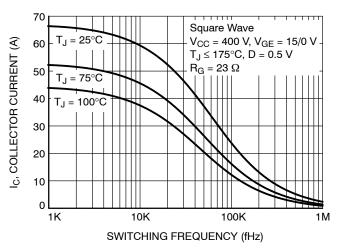


Figure 15. Load Current vs. Frequency

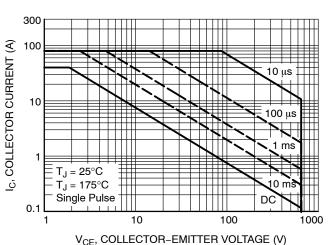


Figure 16. SOA Characteristics (FBSOA)

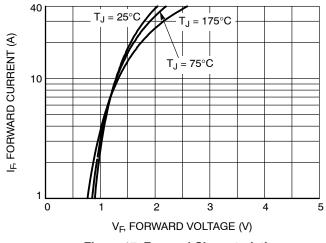


Figure 17. Forward Characteristics

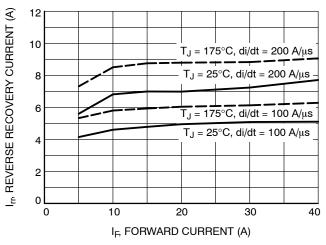


Figure 18. Reverse Recovery Current

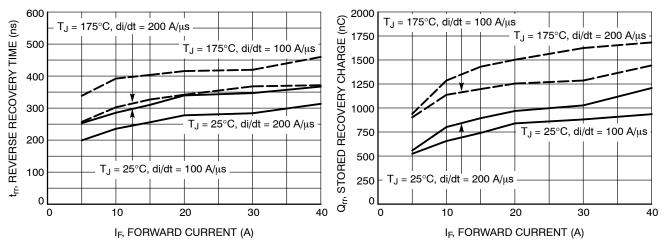


Figure 19. Reverse Recovery Time

Figure 20. Stored Charge

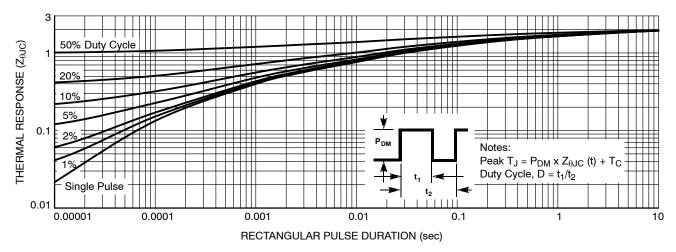
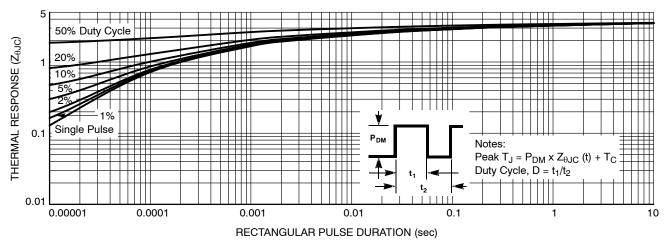
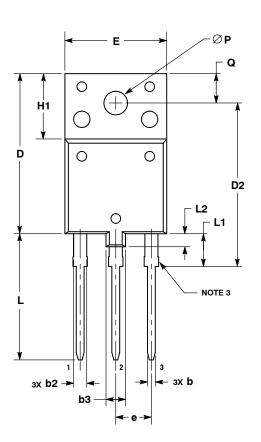
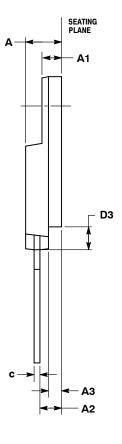


Figure 21. Transient Thermal Impedance of IGBT


Figure 22. Transient Thermal Impedance of Diode

TO-3PF-3L CASE 340AH **ISSUE A**

DATE 09 JAN 2015

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. CONTOUR UNCONTROLLED IN THIS AREA (6 PLACES).
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT THE OUTERNOST EXTREME OF THE PLASTIC BODY.
 5. DIMENSION 2D DOES NOT INCLUDE DAMBAR PROTRUSION.
- LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.20.

	MILLIMETERS			
DIM	MIN	MAX		
Α	5.30	5.70		
A1	2.80	3.20		
A2	3.10	3.50		
А3	1.80	2.20		
p	0.65	0.95		
b2	1.90	2.15		
b3	3.80	4.20		
С	0.80	1.10		
D	24.30	24.70		
D2	24.70	25.30		
D3	3.30	3.70		
Ε	15.30	15.70		
е	5.35	5.55		
H1	9.80	10.20		
٦	19.10	19.50		
L1	4.80	5.20		
L2	1.90	2.20		
Р	3.40	3.80		
Ø	4.30	4.70		

DOCUMENT NUMBER:	98AON79755E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-3PF-3L		PAGE 1 OF 1

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative