

May 2014

FGB3040G2_F085 / FGD3040G2_F085 FGP3040G2_F085 / FGI3040G2_F085

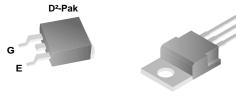
EcoSPARK®2 300mJ, 400V, N-Channel Ignition IGBT

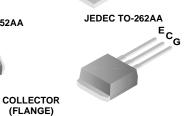
Features

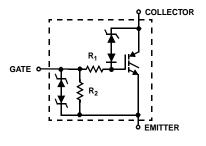
- SCIS Energy = 300mJ at T_J = 25°C
- Logic Level Gate Drive
- Qualified to AEC Q101

JEDEC TO-252AA

D-Pak


■ RoHS Compliant


Applications


- Automotive Ignition Coil Driver Circuits
- Coil On Plug Applications

Package JEDEC TO-263AB D²-Pak JEDEC TO-220AB ECG

Device Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1mA)	400	V
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10mA)	28	V
E _{SCIS25}	Self Clamping Inductive Switching Energy (Note 1)	300	mJ
	Self Clamping Inductive Switching Energy (Note 2)	170	mJ
I _{C25}	Collector Current Continuous, at V _{GE} = 5.0V, T _C = 25°C	41	Α
I _{C110}	Collector Current Continuous, at V _{GE} = 5.0V, T _C = 110°C	25.6	Α
V_{GEM}	Gate to Emitter Voltage Continuous	±10	V
D	Power Dissipation Total, at T _C = 25°C	150	W
P_D	Power Dissipation Derating, for T _C > 25°C	1	W/°C
T_{J}	Operating Junction Temperature Range	-55 to +175	°C
T _{STG}	Storage Junction Temperature Range	-55 to +175	°C
T_L	Max. Lead Temp. for Soldering (Leads at 1.6mm from case for 10s)	300	°C
T _{PKG}	PKG Reflow soldering according to JESD020C		°C
ESD	HBM-Electrostatic Discharge Voltage at 100pF, 1500 Ω	4	kV
EOD	CDM-Electrostatic Discharge Voltage at 1Ω	2	kV

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FGB3040G2	FGB3040G2_F085	TO-263AB	330mm	24mm	800
FGD3040G2	FGD3040G2_F085	TO-252AA	330mm	16mm	2500
FGP3040G2	FGP3040G2_F085	TO-220AB	Tube	N/A	50
FGI3040G2	FGI3040G2_F085	TO-262AA	Tube	N/A	50

Electrical Characteristics T_A = 25°C unless otherwise noted

Symbol Parameter Test Conditions Min Typ Max Ur

Off State Characteristics

BV _{CER}	Collector to Emitter Breakdown Voltage	I_{CE} = 2mA, V_{GE} = 0, tage R_{GE} = 1KΩ, T_{J} = -40 to 150°C		370	400	430	V
BV _{CES}	Collector to Emitter Breakdown Voltage	$T_{J} = -40 \text{ to } 150^{\circ}\text{C}$		390	420	450	٧
BV _{ECS}	Emitter to Collector Breakdown Voltage	ge I_{CE} = -20mA, V_{GE} = 0V, T_{J} = 25°C		28	-	1	V
BV _{GES}	Gate to Emitter Breakdown Voltage	nitter Breakdown Voltage I _{GES} = ±2mA		±12	±14	-	V
	Collector to Emitter Leakage Current	V_{CE} = 250V, R_{GE} = 1K Ω	$T_J = 25^{\circ}C$	-	-	25	μΑ
I _{CER}	ICER Collector to Emitter Leakage Current		$T_{J} = 150^{\circ}C$	-	-	1	mA
	Emitter to Collector Leakage Current	V _{EC} = 24V,	$T_{J} = 25^{\circ}C$	-	-	1	mA
I _{ECS}	Emilier to Collector Leakage Current		$T_{J} = 150^{\circ}C$	-	-	40	IIIA
R ₁	Series Gate Resistance			-	120	-	Ω
R ₂	Gate to Emitter Resistance			10K	-	30K	Ω

On State Characteristics

$V_{CE(SAT)}$	Collector to Emitter Saturation Voltage	$I_{CE} = 6A, V_{GE} = 4V,$	$T_{J} = 25^{\circ}C$	-	1.15	1.25	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	I_{CE} = 10A, V_{GE} = 4.5V,	$T_J = 150^{\circ}C$	-	1.35	1.50	V
V _{CE(SAT)}	Collector to Emitter Saturation Voltage	$I_{CE} = 15A, V_{GE} = 4.5V,$	$T_J = 150^{\circ}C$	-	1.68	1.85	V
E _{SCIS}	Self Clamped Inductive Switching	L = 3.0 mHy,RG = 1KΩ,	TJ = 25°C	1	-	300	mJ
0010	·	VGE = 5V, (Note 1)					

Thermal Characteristics

R ₀ JC Thermal Resistance Junction to Case	-	-	1	°C/W
---	---	---	---	------

Notes:

1: Self Clamping Inductive Switching Energy (E_{SCIS25}) of 300 mJ is based on the test conditions that starting Tj=25°C; L=3mHy, I_{SCIS} =14.2A, V_{CC} =100V during inductor charging and V_{CC} =0V during the time in clamp.

2: Self Clamping Inductive Switching Energy ($E_{SCIS150}$) of 170 mJ is based on the test conditions that starting Tj=150°C; L=3mHy, I_{SCIS} =10.8A, V_{CC} =100V during inductor charging and V_{CC} =0V during the time in clamp.

Min Typ Max Units

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted

Parameter

Dynamic Characteristics							
Q _{G(ON)}	Gate Charge	I _{CE} = 10A, V _{CE} = 12V, V _{GE} = 5V		-	21	-	nC
V _{GE(TH)}	Gate to Emitter Threshold Voltage $I_{CE} = 1$ mA, $V_{CE} = V_{GE}$,	lor = 1mA Vor = Vor	$T_{J} = 25^{\circ}C$	1.3	1.7	2.2	V
▼GE(TH)		I'CE IIII'N, VCE VGE,	$T_{J} = 150^{\circ}C$	0.75	1.2	1.8	
V_{GEP}	Gate to Emitter Plateau Voltage	V _{CE} = 12V, I _{CE} = 10A		-	2.8	-	V

Test Conditions

Switching Characteristics

Symbol

t _{d(ON)R}	Current Turn-On Delay Time-Resistive	<u> </u>	-	0.9	4	μS
t _{rR}	Current Rise Time-Resistive	$V_{GE} = 5V, R_G = 1K\Omega$ $T_J = 25^{\circ}C,$	1	1.9	7	μS
t _{d(OFF)L}	Current Turn-Off Delay Time-Inductive	V _{CE} = 300V, L = 1mH,	-	4.8	15	μS
t _{fL}	Current Fall Time-Inductive	$V_{GE} = 5V, R_{G} = 1K\Omega$ $I_{CE} = 6.5A, T_{J} = 25^{\circ}C,$	-	2.0	15	μS

Typical Performance Curves

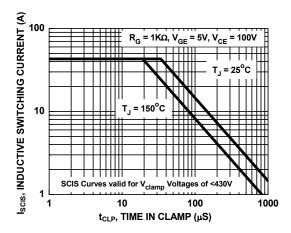
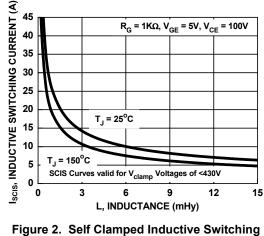



Figure 1. Self Clamped Inductive Switching Current vs. Time in Clamp

Current vs. Inductance

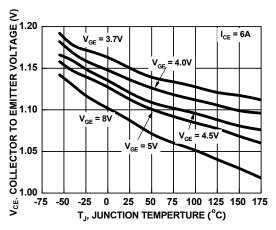


Figure 3. Collector to Emitter On-State Voltage vs. Junction Temperature

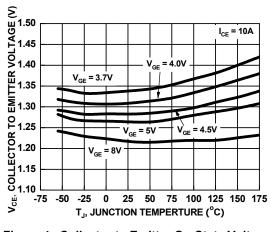


Figure 4. Collector to Emitter On-State Voltage vs. Junction Temperature

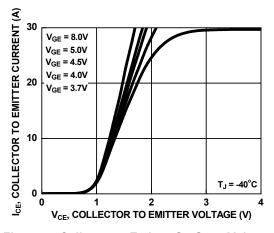


Figure 5. Collector to Emitter On-State Voltage vs. Collector Current

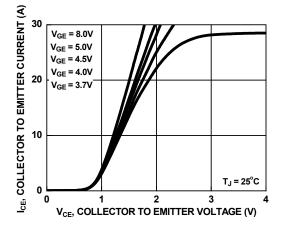


Figure 6. Collector to Emitter On-State Voltage vs. Collector Current

Typical Performance Curves (Continued)

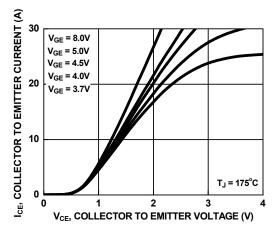


Figure 7. Collector to Emitter On-State Voltage vs. Collector Current

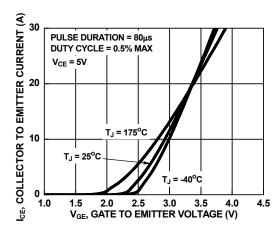


Figure 8. Transfer Characteristics

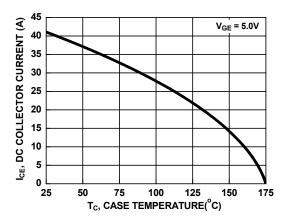


Figure 9. DC Collector Current vs. Case Temperature

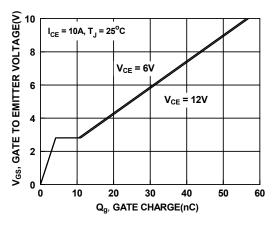


Figure 10. Gate Charge

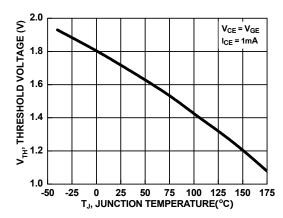


Figure 11. Threshold Voltage vs. Junction Temperature

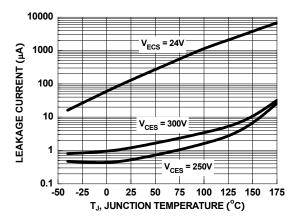
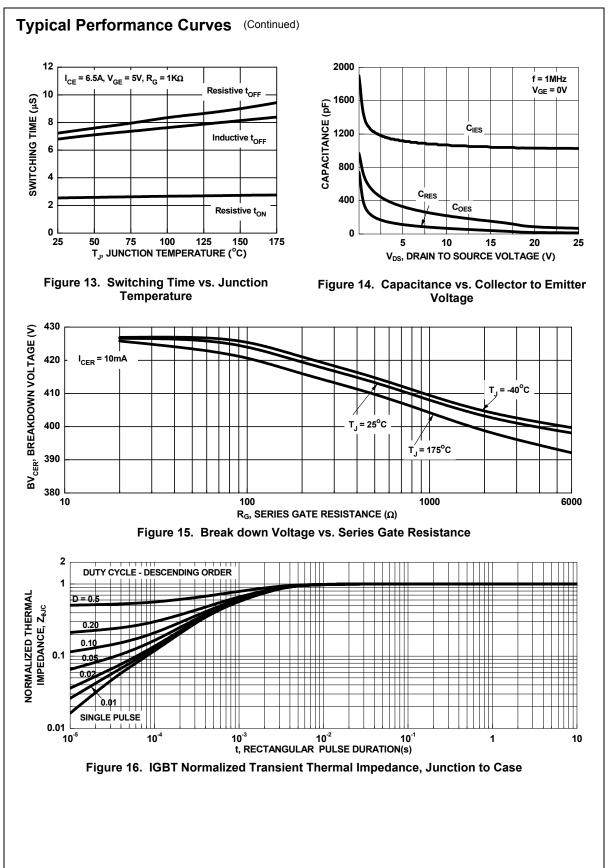
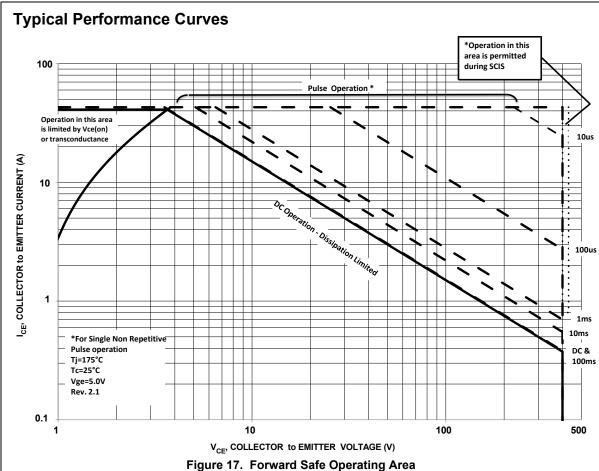
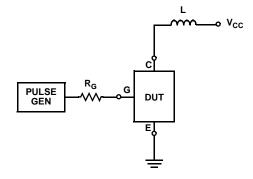





Figure 12. Leakage Current vs. Junction Temperature

Test Circuit and Waveforms

 $R_{G} = 1K\Omega$ DUT V_{CC}

Figure 18. Inductive Switching Test Circuit

Figure 19. t_{ON} and t_{OFF} Switching Test Circuit

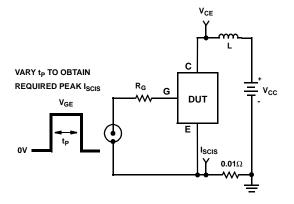


Figure 20. Energy Test Circuit

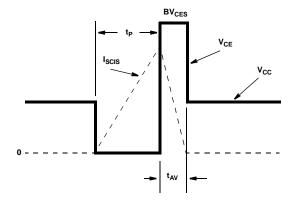


Figure 21. Energy Waveforms

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
AX-CAP®*
BitSiC™
Build it Now™
CorePLUS™

CorePLUSTM
CorePOWERTM
CROSSVOLTTM
CTLTM

Current Transfer Logic[™]
DEUXPEED[®]
Dual Cool[™]
EcoSPARK[®]
EfficentMax[™]
ESBC[™]

Fairchild[®]
Fairchild Semiconductor[®]
FACT Quiet Series[™]
FACT[®]
FAST[®]
FastvCore[™]

F-PFS™ FRFET®

Global Power ResourceSM GreenBridge[™]

Green FPS™ Green FPS™ e-Series™

G*max*[™] GTO[™] IntelliMAX[™] ISOPLANAR[™]

Marking Small Speakers Sound Louder

and BetterTM
MegaBuckTM
MICROCOUPLERTM
MicroFETTM
MicroPakTM

Micropak:

Micropak2TM
MillerDriveTM
MotionMaxTM
mWSaver[®]
OptoHiTTM
OPTOLOGIC[®]
OPTOPLANAR[®]

® PowerTrench® PowerXS™

Programmable Active Droop™

QFĒT[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™

Solutions for Your Success™

SPM®
STEALTH™
SuperFET®
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SupreMOS®
SyncFET™
Sync-Lock™

SYSTEM ®*
GENERAL
TinyBoost®
TinyBuck®
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyPWM™
TranSiC™
TriFault Detect™
TRUECURRENT®*
uSerDes™

SerDes*
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
VoltagePlus™

XS™ 仙童™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FETBench™

FPS™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are
 intended for surgical implant into the body or (b) support or sustain life,
 and (c) whose failure to perform when properly used in accordance with
 instructions for use provided in the labeling, can be reasonably
 expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative