IGBT - Field Stop 600 V, 20 A

FGH20N60UFD

Description

Using novel field stop IGBT Technology, ON Semiconductor's field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Features

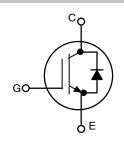
- High Current Capability
- Low Saturation Voltage: $V_{CE(sat)} = 1.8 \text{ V} @ I_C = 20 \text{ A}$
- High Input Impedance
- Fast Switching
- This Device is Pb-Free and is RoHS Compliant

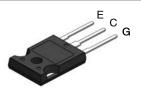
Applications

• Solar Inverter, UPS, Welder, PFC

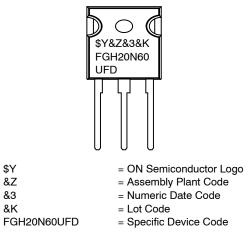
ABSOLUTE MAXIMUM RATINGS

Symbol	Value	Unit
V _{CES}	600	V
V _{GES}	±20	V
	±30	
Ι _C	40 20	A
I _{CM} (Note 1)	60	A
IF	20 10	A
I _{FM} (Note 1)	60	A
PD	165 66	W
TJ	–55 to + 150	°C
T _{stg}	–55 to + 150	°C
TL	300	°C
	V _{CES} V _{GES} I _C I _C (Note 1) I _F (Note 1) P _D T _J T _{stg}	$\begin{tabular}{ c c c c } \hline V_{CES} & 600 \\ \hline V_{GES} & \pm 20 \\ \hline & \pm 30 \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Repetitive rating: Pulse width limited by max. junction temperature.

ON Semiconductor®


www.onsemi.com

TO-247-3LD CASE 340CK

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance Junction-to-Case, for IGBT	$R_{ ext{ heta}JC}$	-	0.76	°C/W
Thermal Resistance Junction-to-Case, for Diode	$R_{ ext{ heta}JC}$	-	2.51	°C/W
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	-	40	°C/W

PACKAGE MARKING AND ORDERING INFORMATION

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FGH20N60UFDTU	FGH20N60UFD	TO-247	Tube	N/A	N/A	30 Units

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_C = 25°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector to Emitter Breakdown Voltage	BV _{CES}	V_{GE} = 0 V, I _C = 250 μ A	600	-	-	V
Temperature Coefficient of Breakdown Voltage	$\Delta BV_{CES}/\Delta T_{J}$	V_{GE} = 0 V, I _C = 250 µA	-	0.6	-	V/°C
Collector Cut-Off Current	I _{CES}	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
G-E Leakage Current	I _{GES}	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	±400	nA
ON CHARACTERISTICs						
G-E Threshold Voltage	V _{GE(th)}	$I_C = 250 \ \mu\text{A}, \ V_{CE} = V_{GE}$	4.0	5.0	6.5	V
Collector to Emitter Saturation Voltage	V _{CE(sat)}	I _C = 20 A, V _{GE} = 15 V	-	1.8	2.4	V
		I_{C} = 20 A, V_{GE} = 15 V, T_{C} = 125°C	_	2.0	-	V
DYNAMIC CHARACTERISTICS		•			•	
Input Capacitance	C _{ies}	V_{CE} = 30 V, V_{GE} = 0 V, f = 1 MHz	-	940	-	pF
Output Capacitance	C _{oes}	1	-	110	-	pF
Reverse Transfer Capacitance	C _{res}	1	-	40	-	pF
SWITCHING CHARACTERISTICS		•			•	
Turn-On Delay Time	t _{d(on)}	$V_{\rm CC} = 400 \text{ V}, \text{ I}_{\rm C} = 20 \text{ A},$	-	13	-	ns
Rise Time	t _r	$R_G = 10 \Omega$, $V_{GE} = 15 V$, Inductive Load, $T_C = 25^{\circ}C$	_	17	-	ns
Turn-Off Delay Time	t _{d(off)}	1	_	87	-	ns
Fall Time	t _f	1	-	32	64	ns
Turn-On Switching Loss	E _{on}	1	-	0.38	-	mJ
Turn-Off Switching Loss	E _{off}	1	-	0.26	-	mJ
Total Switching Loss	E _{ts}	1	-	0.64	-	mJ
Turn-On Delay Time	t _{d(on)}	$V_{CC} = 400 \text{ V}, \text{ I}_{C} = 20 \text{ A},$	-	13	-	ns
Rise Time	t _r	$R_G = 10 \Omega, V_{GE} = 15 V,$ Inductive Load, $T_C = 125^{\circ}C$	_	16	-	ns
Turn–Off Delay Time	t _{d(off)}		_	92	-	ns
Fall Time	t _f		_	63	-	ns
Turn–On Switching Loss	E _{on}		-	0.41	-	mJ
Turn–Off Switching Loss	E _{off}		-	0.36	-	mJ
Total Switching Loss	E _{ts}		-	0.77	-	mJ
Total Gate Charge	Qg	V _{CE} = 400 V, I _C = 20 A, V _{GE} = 15 V	-	63	-	nC
Gate to Emitter Charge	Q _{ge}	1	-	7	-	nC
Gate to Collector Charge	Q _{gc}	1	_	32	_	nC

Parametr	Symbol	Test Conditions		Min	Тур	Max	Unit
Diode Forward Voltage	V _{FM}	l _F = 10 A	T _C = 25°C	-	1.9	2.5	V
			T _C = 125°C	-	1.7	-	
Diode Reverse Recovery Time	t _{rr}	l _F = 10 A, di _F /dt = 200 A/μs	T _C = 25°C	-	34	-	ns
			T _C = 125°C	-	57	-	
Diode Reverse Recovery Charge	Q _{rr}		T _C = 25°C	-	41	-	nC
			T _C = 125°C	-	96	-]

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

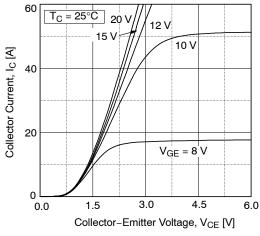
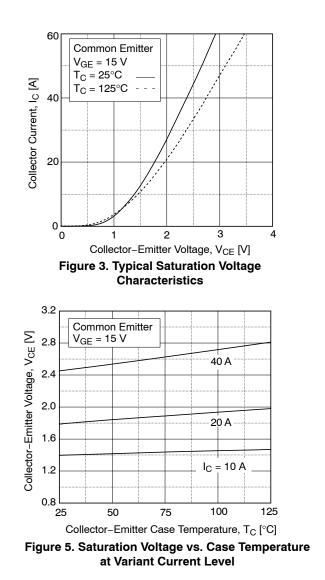
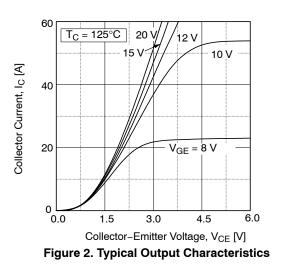
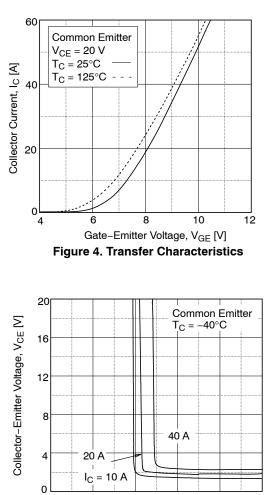
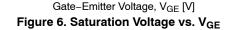
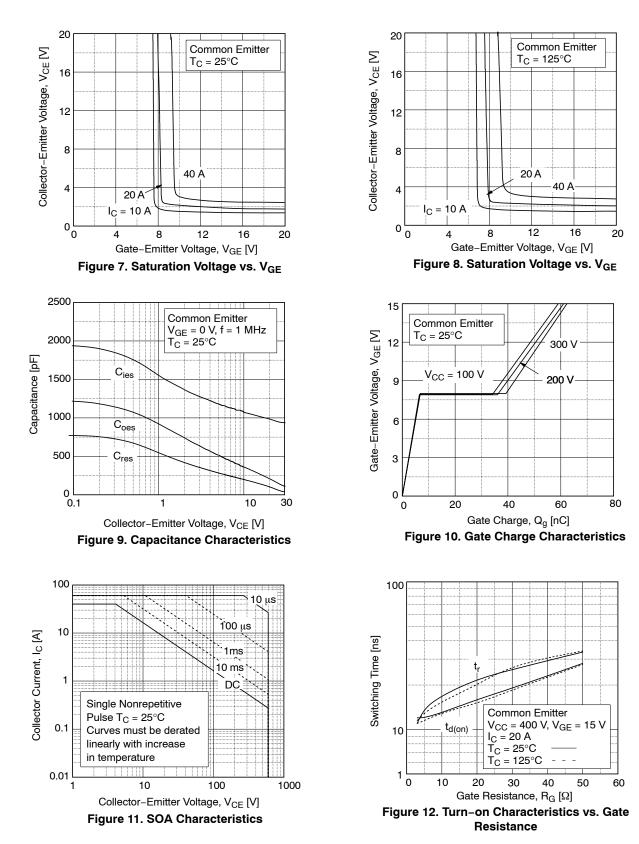
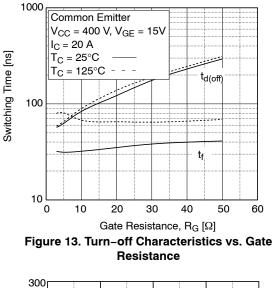






Figure 1. Typical Output Characteristics





TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

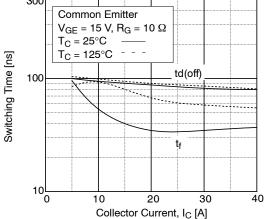
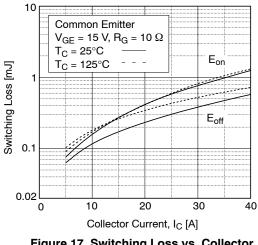
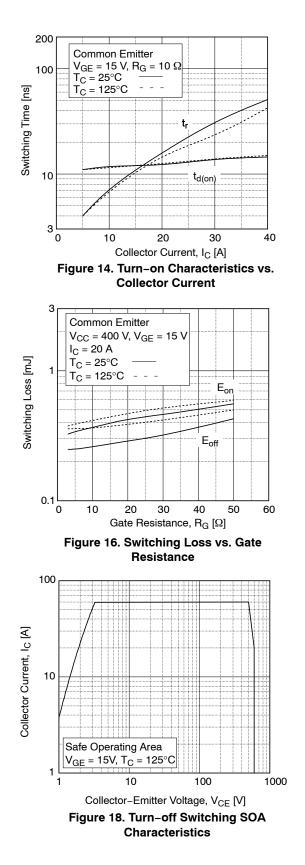
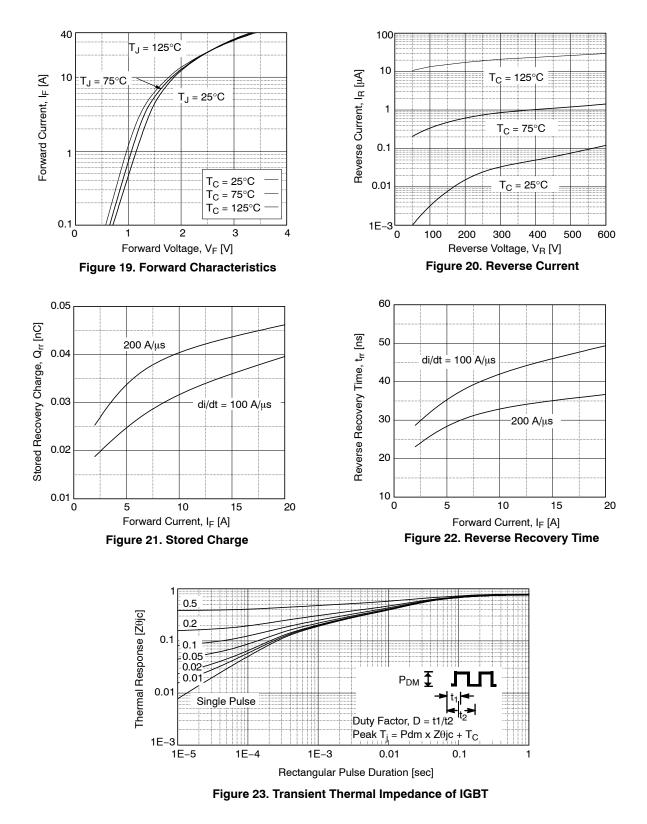
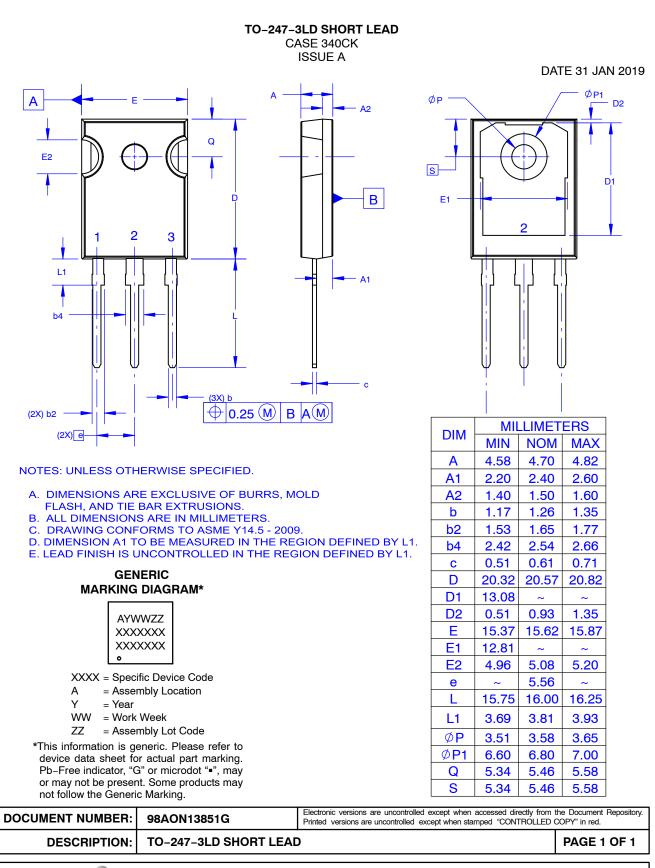


Figure 15. Turn-off Characteristics vs. Collector Current


Figure 17. Switching Loss vs. Collector Current

TYPICAL CHARACTERISTICS

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights or others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative