

IGBT - Power, Co-PAK N-Channel, Field Stop VII (FS7), SCR, Power TO247-3L, 1200 V, 1.4 V, 100 A

FGY100T120RWD

Description

Using the novel field stop 7th generation IGBT technology and the Gen7 Diode in TP247 3-lead package, FGY100T120RWD offers the optimum performance with low conduction losses and good switching controllability for a high efficiency operation in various applications like motor control, UPS, data center and high-power switch.

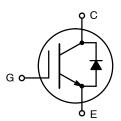
Features

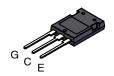
- Low Conduction Loss and Optimized Switching
- Maximum Junction Temperature $T_I = 175$ °C
- Positive Temperature Coefficient for Easy Parallel Operation
- High Current Capability
- 100% of the Parts are Dynamically Tested
- Short Circuit Rated
- RoHS Compliant

Applications

- Motor Control
- UPS
- General Application Requiring High Power Switch

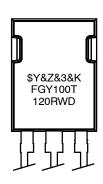
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)


Parameter		Symbol	Value	Unit
Collector to Emitter Voltage		V _{CES}	1200	V
Gate to Emitter Voltage		V_{GES}	±20	
Transient Gate to Emitter	Voltage		±30	
Collector Current	T _C = 25°C	Ic	200	Α
	T _C = 100°C		100	
Power Dissipation	T _C = 25°C	P_{D}	1495	W
	T _C = 100°C		747	
Pulsed Collector Current	$T_{C} = 25^{\circ}C,$ $t_{p} = 10 \ \mu s$ (Note 1)	I _{CM}	300	Α
Diode Forward	T _C = 25°C	IF	200	
Current	T _C = 100°C		100	
Pulsed Diode Forward Current	$T_{C} = 25^{\circ}C,$ $t_{p} = 10 \mu s$ (Note 1)	I _{FM}	300	
Short Circuit Withstand Time V _{GE} = 15 V, V _{CC} = 600 V, T _C = 150°C		T _{SC}	5	μs
Operating Junction and Storage Temperature		T _J , T _{STG}	-55 to 175	°C
Lead Temperature for Soldering Purposes		T_L	260	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Repetitive rating: pulse width limited by max. Junction temperature.

BV _{CES}	V _{CE(SAT)}	Ic
1200 V	1.4 V	100 A


PIN CONNECTIONS

TO247-3LD CASE 340CD

MARKING DIAGRAM

\$Y	= onsemi logo
&Z	= Assembly Plant Code
&3	= 3-Digit Date Code
&K	= 2-Digit Lot Traceability Code
FGY100T120RWD	= Specific Device Code

ORDERING INFORMATION

Device	Package	Shipping
FGY100T120RWD	TO247-3LD (Pb-Free)	30 Units / Tube

THERMAL CHARACTERISTICS

Parameter	Symbol	Max Value	Unit
Thermal Resistance, Junction to Case for IGBT	$R_{ heta JC}$	0.1	°C/W
Thermal Resistance, Junction to Case for Diode		0.19	
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	40	

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_J = 25°C unless otherwise noted) Parameter Symbol Test Conditions

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector to Emitter Breakdown Voltage	BV _{CES}	$V_{GE} = 0 \text{ V, } I_{C} = 5 \text{ mA}$	1200	-	-	V
Breakdown Voltage Temperature Coefficient	$\Delta BV_{CES} / \Delta T_{J}$	$V_{GE} = 0 \text{ V, } I_C = 5 \text{ mA}$	-	662	-	mV/°C
Collector to Emitter Cut-Off Current	I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	_	_	40	μΑ
Gate to Emitter Leakage Current	I _{GES}	V _{GE} = 20 V, V _{CE} = 0 V	-	-	±400	nA
ON CHARACTERISTICS						
Gate to Emitter Threshold Voltage	V _{GE(TH)}	$V_{GE} = V_{CE}$, $I_C = 100 \text{ mA}$	4.9	5.92	6.7	V
Collector to Emitter Saturation	V _{CE(SAT)}	V _{GE} = 15 V, I _C = 100 A, T _J = 25°C	1.15	1.43	1.75	V
Voltage		V _{GE} = 15 V, I _C = 100 A, T _J = 175°C	-	1.66	-	1
DYNAMIC CHARACTERISTICS						
Input Capacitance	C _{IES}	V _{CE} = 30 V, V _{GE} = 0 V, f = 1 MHz	-	12200	_	pF
Output Capacitance	C _{OES}		-	392	-	
Reverse Transfer Capacitance	C _{RES}		-	44.2	-	1
Total Gate Charge	Q_{G}	V _{CE} = 600 V, V _{GE} = 15 V,	-	427	-	nC
Gate to Emitter Charge	Q_GE	I _C = 100 A	-	108	-]
Gate to Collector Charge	Q _{GC}]	-	161	-	
SWITCHING CHARACTERISTIC, II	NDUCTIVE LOAI	D				
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V, V _{GE} = 15 V,	-	74	-	ns
Turn-Off Delay Time	t _{d(off)}	I_C = 50 A, R_G = 4.7 Ω, T_J = 25°C	-	464	-	ns
Rise Time	t _r]	-	45	-	ns
Fall Time	t _f		-	196	-	1
Turn-On Switching Loss	E _{on}		-	3.43	-	mJ
Turn-Off Switching Loss	E _{off}		-	4.54	-	1
Total Switching Loss	E _{ts}		-	7.97	-	1
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V, V _{GE} = 15 V,	-	80	-	ns
Turn-Off Delay Time	t _{d(off)}	I_C = 100 A, R_G = 4.7 Ω, T_J = 25°C	-	364	-	ns
Rise Time	t _r		-	85	-	ns
Fall Time	t _f		-	180	-	1
Turn-On Switching Loss	E _{on}	1	-	8.13	-	mJ
Turn-Off Switching Loss	E _{off}	1	-	7.05	-	1
Total Switching Loss	E _{ts}	1	-	15.18	-	1

ELECTRICAL CHARACTERISTICS OF THE IGBT (T_J = 25°C unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
SWITCHING CHARACTERISTIC, IN	NDUCTIVE LO	/D	•	•		•
Turn-On Delay Time	t _{d(on)}	$V_{CE} = 600 \text{ V}, V_{GE} = 15 \text{ V},$	-	70	_	ns
Turn-Off Delay Time	t _{d(off)}	$I_C = 50 \text{ A}, R_G = 4.7 \Omega,$ $T_{,1} = 175 ^{\circ}\text{C}$	_	536	-	ns
Rise Time	t _r	7	-	50	-	ns
Fall Time	t _f		-	348	-	1
Turn-On Switching Loss	E _{on}		-	5.58	-	mJ
Turn-Off Switching Loss	E _{off}		-	6.83	-	1
Total Switching Loss	E _{ts}	1	_	12.41	-	1
Turn-On Delay Time	t _{d(on)}	V _{CE} = 600 V, V _{GE} = 15 V,	-	78	-	ns
Turn-Off Delay Time	t _{d(off)}	I_C = 100 A, R _G = 4.7 Ω, T _J = 175°C	_	412	-	ns
Rise Time	t _r		_	93	-	ns
Fall Time	t _f		_	316	-	
Turn-On Switching Loss	E _{on}		_	12.00	-	mJ
Turn-Off Switching Loss	E _{off}		=	10.30	-	
Total Switching Loss	E _{ts}		=	22.30	-	
DIODE CHARACTERISTIC						
Diode Forward Voltage	V _F	I _F = 100 A, T _J = 25°C	1.46	1.80	2.08	V
		I _F = 100 A, T _J = 175°C	-	1.90	-	
DIODE SWITCHING CHARACTERI	STIC, INDUCT	IVE LOAD				
Reverse Recovery Time	t _{rr}	$V_R = 600 \text{ V}, I_F = 50 \text{ A},$	_	256	_	ns
Reverse Recovery Charge	Q _{rr}	$dI_F/dt = 500 \text{ A/}\mu\text{s},$ $T_J = 25^{\circ}\text{C}$	_	3140	-	nC
Reverse Recovery Energy	E _{rec}	1	-	1	-	mJ
Peak Reverse Recovery Current	I _{RRM}		_	24.5	-	Α
Reverse Recovery Time	t _{rr}	$V_R = 600 \text{ V}, I_F = 100 \text{ A},$	-	347	-	ns
Reverse Recovery Charge	Q _{rr}	$H_{J} = 500 \text{ A/}\mu\text{s},$ $H_{J} = 25^{\circ}\text{C}$	_	4408	-	nC
Reverse Recovery Energy	E _{rec}		=	2	-	mJ
Peak Reverse Recovery Current	I _{RRM}		_	25.8	-	Α
Reverse Recovery Time	t _{rr}	$V_R = 600 \text{ V}, I_F = 50 \text{ A},$	-	424	-	ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 500 A/μs, T _J = 175°C	_	8610	-	nC
Reverse Recovery Energy	E _{rec}	1	_	4	-	mJ
Peak Reverse Recovery Current	I _{RRM}		_	40.8	-	Α
Reverse Recovery Time	t _{rr}	V _R = 600 V, I _F = 100 A,	-	572	-	ns
Reverse Recovery Charge	Q _{rr}	dl _F /dt = 500 A/μs, T _J = 175°C	-	12476	-	nC
Reverse Recovery Energy	E _{rec}	7	_	5	_	mJ
Peak Reverse Recovery Current	I _{RRM}		_	43.6	_	Α

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

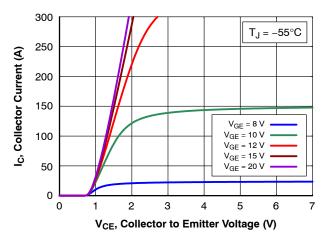


Figure 1. Output Characteristics

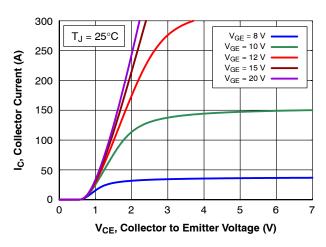


Figure 2. Output Characteristics

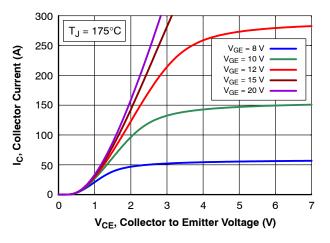


Figure 3. Output Characteristics

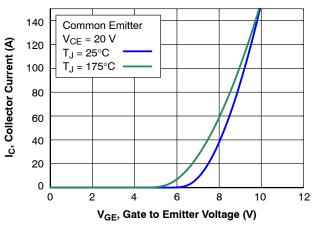


Figure 4. Transfer Characteristics

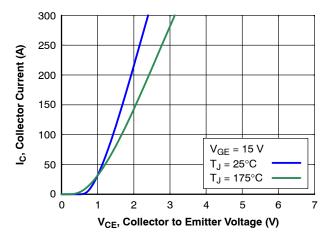


Figure 5. Saturation Voltage Characteristics

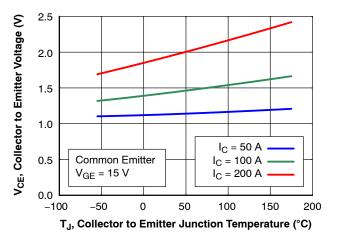


Figure 6. Saturation Voltage vs Junction Temperature

TYPICAL CHARACTERISTICS (CONTINUED)

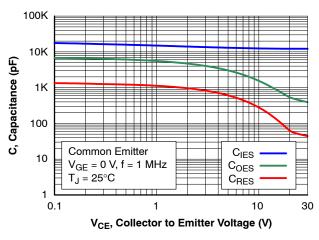


Figure 7. Capacitance Characteristics

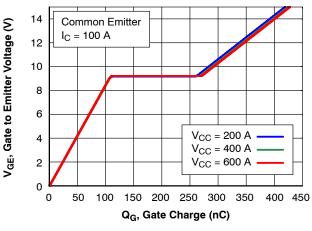


Figure 8. Gate Charge Characteristics

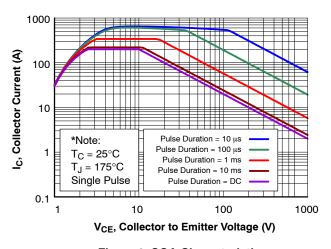


Figure 9. SOA Characteristics

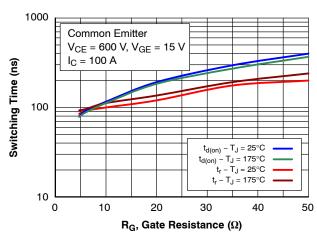


Figure 10. Turn-On Time vs Gate Resistance

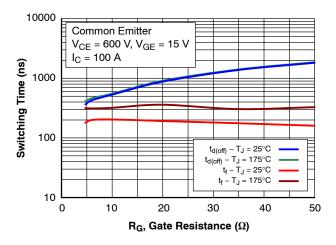


Figure 11. Turn-Off Time vs Gate Resistance

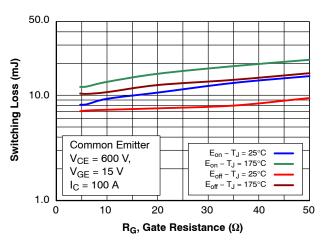


Figure 12. Switching Loss vs Gate Resistance

TYPICAL CHARACTERISTICS (CONTINUED)

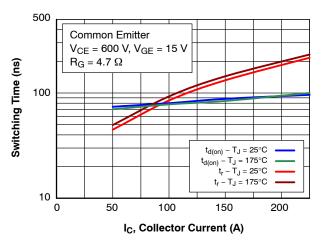


Figure 13. Turn-On Time vs Collector Current

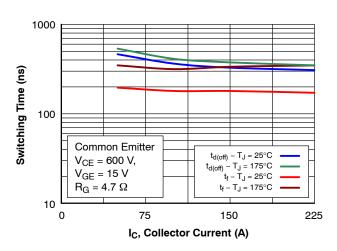


Figure 14. Turn-Off Time vs Collector Current

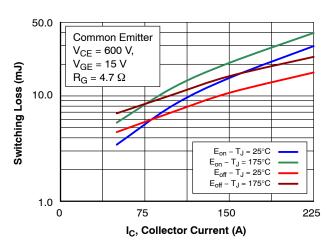


Figure 15. Switching Loss vs Collector Current

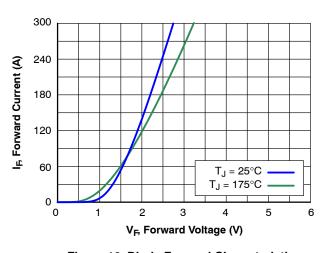


Figure 16. Diode Forward Characteristics

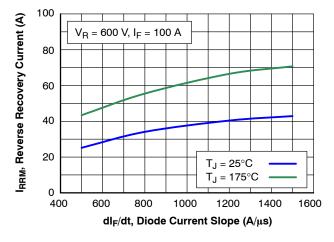


Figure 17. Diode Reverse Recovery Current

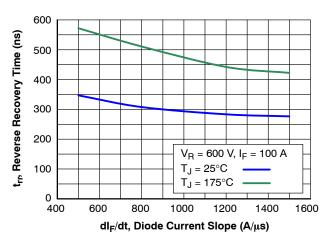


Figure 18. Diode Reverse Recovery Time

TYPICAL CHARACTERISTICS (CONTINUED)

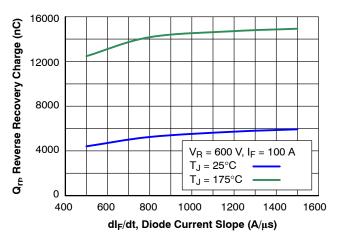


Figure 19. Diode Stored Charge Characteristics

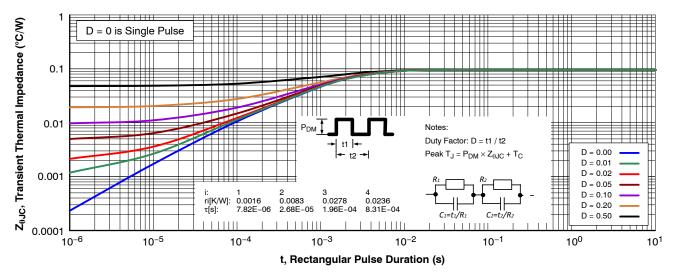


Figure 20. Transient Thermal Impedance of IGBT

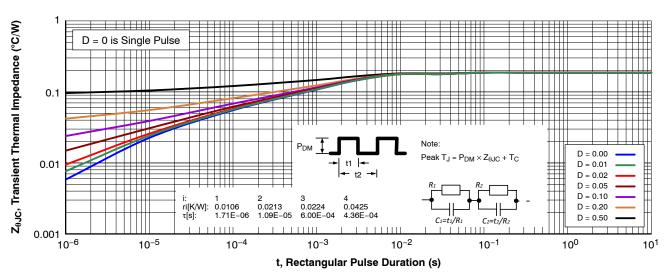
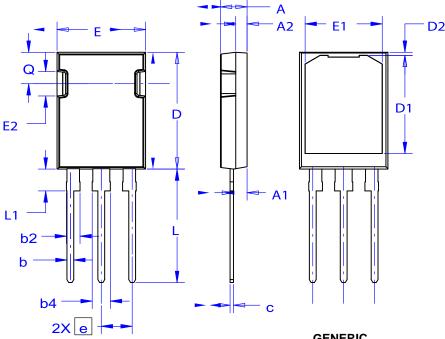


Figure 21. Transient Thermal Impedance of Diode



TO-247-3LD CASE 340CD ISSUE A

DATE 18 SEP 2018

NOTES:

- A. THIS PACKAGE DOES NOT CONFORM TO ANY STANDARDS.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.
- D. DIMENSION AND TOLERANCE AS PER ASME Y14.5-2009.

DIM	MILLIMETERS					
DIM	MIN	NOM	MAX			
Α	4.58	4.70	4.82			
A 1	2.20	2.40	2.60			
A2	1.80	2.00	2.20			
D	20.32	20.57	20.82			
Е	15.37	15.62	15.87			
E2	4.12	4.32	4.52			
е	~	5.45	~			
L	19.90	20.00	20.10			
L1	3.69	3.81	3.93			
Q	5.34	5.46	5.58			
b	1.10	1.20	1.30			
b2	2.10	2.24	2.39			
b4	2.87	3.04	3.20			
С	0.51	0.61	0.71			
D1	16.63	16.83	17.03			
D2	0.51	0.93	1.35			
E1	13.40	13.60	13.80			

GENERIC MARKING DIAGRAM*

XXXXXXXX AYWWG

XXXX = Specific Device Code

A = Assembly Location

Y = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13857G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-247-3LD		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative