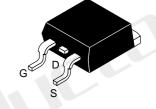

Features


- Uses split-gate technology
- Extremely low on-resistance RDS(on)
- Excellent QgxRDS(on) product
- Qualified according to JEDEC criteria


Application

- Motor Drivers
- UPS (Uninterruptible Power Supplies)
- DC/DC converter
- General purpose applications

VDS	98V
$R_{DS(on)@VGS=10V}$	5.2mΩ
I_{D}	140A

TO-220AB

TO-263

Order Information

Part No.	Package	Marking	Shipping	Qty
FIR140N098PG	TO-220AB	FIR140N098P	Reel	800 PCS
FIR140N098RG	TO-263	FIR140N098R	Tube	1000 PCS

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	98	V
Continuous drain current $T_{\rm C} = 25^{\circ}{\rm C}$ $T_{\rm C} = 100^{\circ}{\rm C}$	lo	140 100	А
Pulsed drain current $T_{\rm C} = 25^{\rm o}$ C, $t_{\rm p}$ limited by $T_{\rm jmax}$	$I_{D\;pulse}$	480	
Avalanche energy, single pulse	E _{AS}	689	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation $T_{\rm C} = 25^{\circ}{\rm C}$	P _{tot}	200	W
Operating junction and storage temperature	$T_{\rm j}$, $T_{ m stg}$	-55+150	$^{\circ}$

Thermal Resistance

Parameter	Symbol	Value	Unit
Thermal resistance, junction – case. Max	ion – case. Max $R_{\rm thJC}$ 0.62		°C/W
Thermal resistance, junction – ambient. Max	R_{thJA}	62.0	C/VV

Electrical Characteristic, at Tj = 25 °C, unless otherwise specified

Dawanastan	Complete	mbal Tast Candition		Value			
Parameter	Symbol Test Condition		min.	typ.	max.	Unit	
Static Characteristic							
Drain-source breakdown							
voltage	$V_{(BR)DSS}$	$V_{\rm GS} = 0 \text{V}, I_{\rm D} = 250 \text{uA}$		98			
Gate threshold voltage	V _{GS(th)}	$V_{\rm DS} = V_{\rm GS}, I_{\rm D} = 250 \mathrm{uA}$ $T_{\rm j} = 25^{\circ}\mathrm{C}$	2.5		4.0	V	
Zero gate voltage drain current	I _{DSS}	$V_{\rm IS}$ =80V, $V_{\rm GS}$ =0V $T_{\rm j}$ =25°C $T_{\rm A}$ =125°C	-	0.05	1 5	μА	
Gate-source leakage current	I_{GSS}	$V_{\rm GS}$ =20V, $V_{\rm DS}$ =0V	- \	1	100	nA	
Drain-source on-state resistance	R _{DS(on)}	$V_{\rm GS} = 10 \text{V}, I_{\rm D} = 50 \text{A},$ $T_{\rm j} = 25 ^{\circ} \text{C}$ $T_{\rm j} = 125 ^{\circ} \text{C}$	-	5.2 -	-	mΩ	
Transconductance	g _{fs}	$V_{\rm DS}$ =5V, $I_{\rm D}$ =50A	-	84.2	-	S	

Dynamic Characteristic

Input Capacitance	C _{iss}	1/ 0)/ 1/ 40)/	-	3900	-	
Output Capacitance	C _{oss}	$V_{\text{GS}} = 0\text{V}, V_{\text{DS}} = 40\text{V},$ f = 1MHz	-	1100	-	pF
Reverse Transfer Capacitance	C _{rss}	1-111112	-	35	-	
Gate Total Charge	Q_{G}	V -10V V -40V	-	75.0	-	
Gate-Source charge	Q_{gs}	$V_{GS} = 10V, V_{DS} = 40V,$ $I_{D} = 50A, f = 1MHz$	-	15.0	-	nC
Gate-Drain charge	Q_{gd}	$I_D = 50A$, $I = 1MDZ$	-	13.0	-	
Turn-on delay time	t _{d(on)}		-	20.1	-	
Rise time	t _r	$T_{\rm j}$ =25°C, $V_{\rm GS}$ =10V,	-	38.9	-	nc
Turn-off delay time	t _{d(off)}	$V_{\rm DS}$ =40V, $R_{\rm L}$ =3 Ω	-	45.1	-	ns
Fall time	t _f		-	22.8	-	
Gate resistance	R_{G}	V_{GS} =0V, V_{DS} =0V, f =1MHz	-	3.3	-	Ω

Body Diode Characteristic

Body Diode Forward Voltage	V_{SD}	V_{GS} =0V, I_{SD} =50A	-	0.95	1.4	٧
Body Diode Reverse Recovery Time	t _{rr}	I _F =20A, dI/dt=500A/μs		60		ns
Body Diode Reverse Recovery Charge	Q_{rr}	I_F =20A, dI/dt =50A/ μ s		52		nC

Typical Performance Characteristics

Figure 1. Typ. Output Characteristics (Tj=25℃)

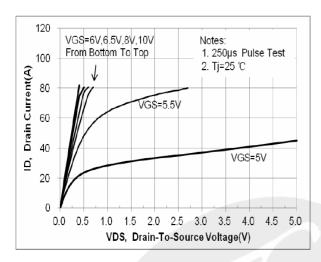


Figure 3. On-Resistance vs. Drain Current and Gate Voltage Figure

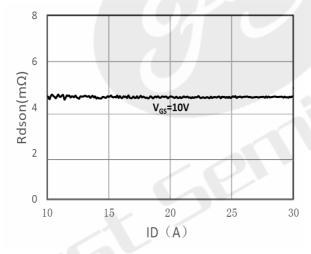


Figure 5. On-Resistance vs. Gate-Source Voltage (Junction Temperature)

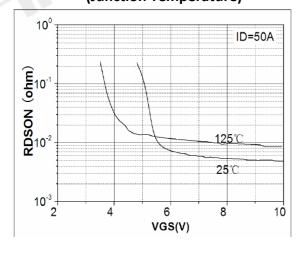


Figure 2. Transfer Characteristics (Junction Temperature)

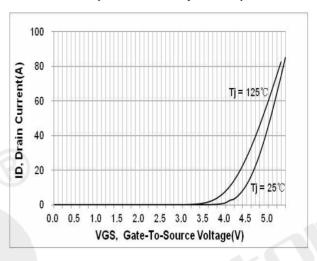


Figure 4. On-Resistance vs. Junction Temperature

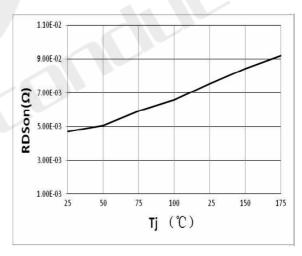
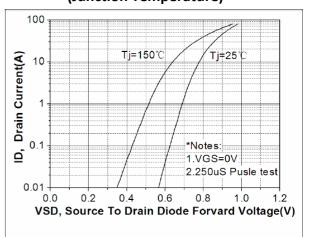
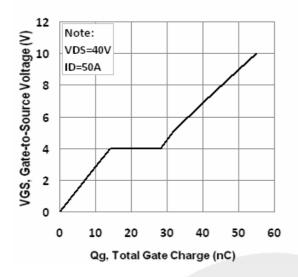




Figure 6. Body-Diode Characteristics (Junction Temperature)

Figure 7. Gate-Charge Characteristics

Figure 8. Capacitance Characteristics

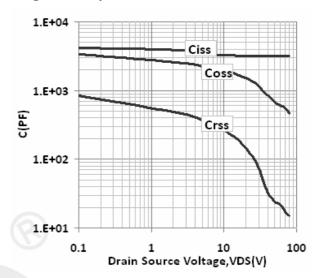
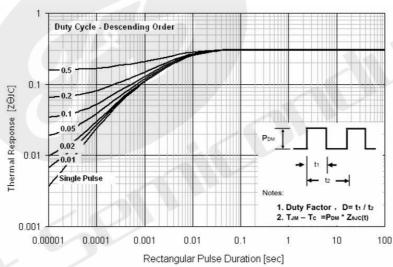
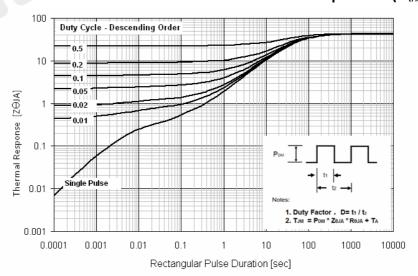
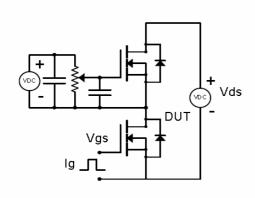
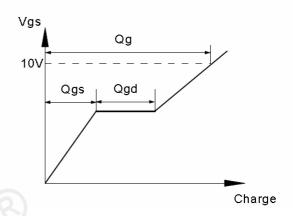
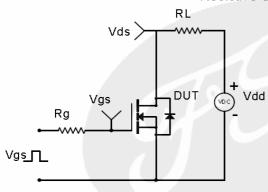


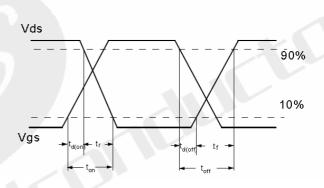
Figure 9: Normalized Maximum Transient Thermal Impedance (R_{thJC})

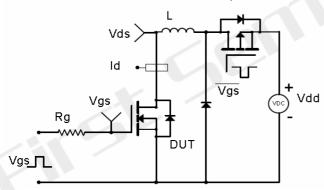



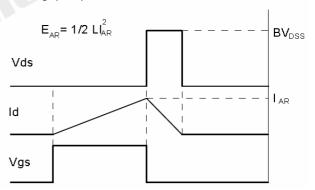

Figure 10: Normalized Maximum Transient Thermal Impedance (R_{thJA})

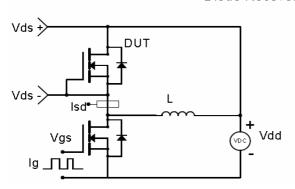


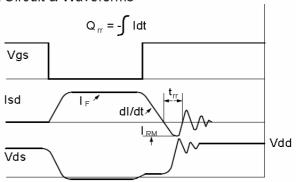

Test Circuit & Waveform

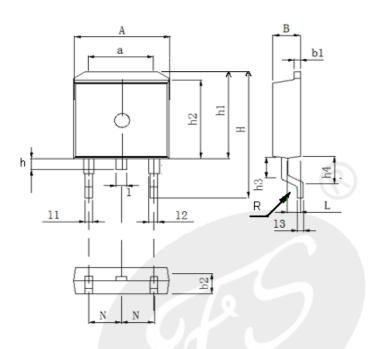

Gate Charge Test Circuit & Waveform



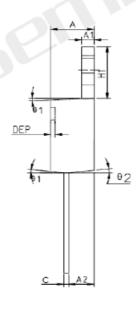

Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms


Diode Recovery Test Circuit & Waveforms




TO-263 Package Outline

DIM	MILLIMETERS
A	9.8 ± 0.2
a	7. 4 ± 0.2
В	4.5 ± 0.2
b1	1.3 ± 0.05
b2	2.4 ± 0.2
Н	15.5 \pm 0.3
h	1.54 ± 0.2
h1	10.5 \pm 0.2
h2	9.2 \pm 0.1
h3	1.54 ± 0.2
h4	2.7 ± 0.2
L	2.4 ± 0.2
1	1. 3 ± 0.1
11	0.8 ± 0.1
12	1. 3 ± 0.1
13	0.5 ± 0.1
N	2. 45

TO-220 Package Outline

SYMBOL	MM				
SIMBOL	MIN	NOM	MAX		
A	4.40	4.57	4.70		
Al	1.27	1.30	1.33		
A2	2.35	2.40	2.50		
Ъ	0.77	-	0.90		
ь2	1.23	-	1.36		
С	0.48	0.50	0.52		
D	15.40	15.60	15.80		
Dl	9.00	9.10	9.20		
DEP	0.05	0.10	0.20		
Е	9.70	9.90	10.10		
El	-	8.70	-		
E2	9.80	10.00	10.20		
Øp1	1.40	1.50	1.60		
e		2.54BSC			
e1		5.08BSC			
Hl	6.40	6.50	6.60		
L	12.75	-	13.17		
Ll	-	-	3.95		
L2		2.50REF.			
Øp	3.57	3.60	3.63		
Q	2.73	2.80	2.87		
θ1	5°	7°	9°		
θ2	1°	3°	5°		

Declaration

- FIRST reserves the right to change the specifications, the same specifications of products due to different packaging line mold, the size of the appearance will be slightly different, shipped in kind, without notice!
 Customers should obtain the latest version information before ordering, and verify whether the relevant information is complete and up-to-date.
- Any semiconductor product under certain conditions has the possibility of failure or failure, The buyer has the responsibility to comply with safety standards and take safety measures when using FIRST products for system design and manufacturing, To avoid To avoid potential failure risks, which may cause personal injury or property damage!
- Product promotion endless, our company will wholeheartedly provide customers with better products!

ATTACHMENT

Revision History

Date	REV	Description	Page
2018 01 01	1.0	Initial release	