

NPN Triple Diffused Planar Silicon Transistor

FJL6920

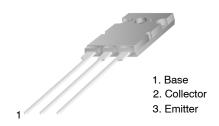
Features

- High Collector–Base Breakdown Voltage: BV_{CBO} = 1700 V
- Low Saturation Voltage: V_{CE}(sat) = 3 V (Max.)
- For Color Monitor
- These Devices are Pb-Free, Halide Free and are RoHS Compliant

Applications

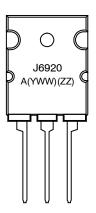
• High Voltage Color Display Horizontal Deflection Output

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)


Parameter	Symbol	Rating	Units
Collector-Base Voltage	V_{CBO}	1700	V
Collector-Emitter Voltage	V_{CEO}	800	V
Emitter-Base Voltage	V_{EBO}	6	V
Collector Current (DC)	I _C	20	Α
Collector Current (Pulse) *	I _{CP}	30	Α
Collector Dissipation	P _C	200	W
Junction Temperature	ire T _J 150		°C
Storage Temperature	T _J , T _{STG}	−55 ~ 150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)


Parameter	Symbol	Max.	Units
Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.625	°C/W

1

TO-264-3LD CASE 340CA

MARKING DIAGRAM

J6920 = Specific Device Code

A = Assembly Site

Y = Year of Production, Last Number

WW = Work Week Number

ZZ = Assembly Lot Number, Last Two Numbers

ORDERING INFORMATION

Device	Package	Shipping		
FJL6920TU	TO-264-3LD	375 Units / Tube		

^{*}Pulse Test: PW = 300 μs, Duty Cycle = 2% Pulsed

FJL6920

ELECTRICAL CHARACTERISTICS (Note 1) ($T_C = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{CES}	Collector Cut-Off Current	V _{CB} = 1400 V, R _{BE} = 0			1	mA
I _{CBO}	Collector Cut-Off Current	V _{CB} = 800 V, I _E = 0			10	μΑ
I _{EBO}	Emitter Cut-Off Current	V _{EB} = 4 V, I _C = 0			1	mA
BV _{CBO}	Collector-Base Breakdown Voltage	$I_C = 500 \mu A, I_E = 0$	1700			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C = 5 mA, I _B = 0	800			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_E = 500 \mu A, I_C = 0$	6			V
h _{FE1}	DC Current Gain	V _{CE} = 5 V, I _C = 1 A	8			
h _{FE2}	DC Current Gain	V _{CE} = 5 V, I _C = 11 A	5.5		8.5	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 11 A, I _B = 2.75 A			3	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 11 A, I _B = 2.75 A			1.5	V
t _{STG}	Storage Time (Note 1)	V_{CC} = 200 V, I_{C} = 10 A, R_{L} = 20 Ω , I_{B1} = 2.0 A, I_{B2} = -4.0 A			3	μs
t _F	Fall Time (Note 1)	V_{CC} = 200 V, I_{C} = 10 A, R_{L} = 20 Ω , I_{B1} = 2.0 A, I_{B2} = -4.0 A		0.15	0.2	μs

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

1. Pulse Test: PW = 20 µs, Duty Cycle = 1% Pulsed

TYPICAL CHARACTERISTICS

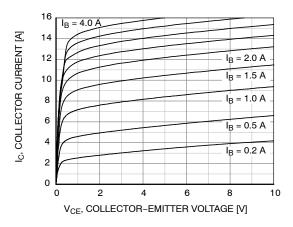


Figure 1. Static Characteristic

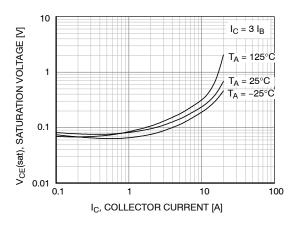


Figure 3. Collector-Emitter Saturation Voltage

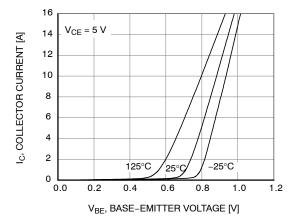


Figure 5. Base-Emitter On Voltage

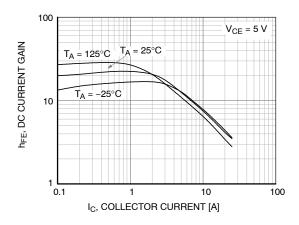


Figure 2. DC Current Gain

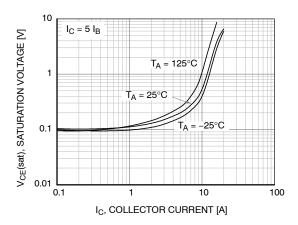


Figure 4. Collector-Emitter Saturation Voltage

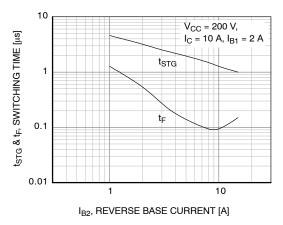


Figure 6. Resistive Load Switching Time

TYPICAL CHARACTERISTICS (Continued)

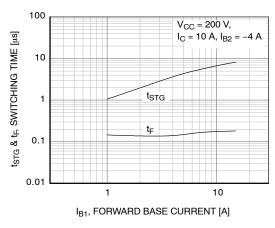


Figure 7. Resistive Load Switching Time

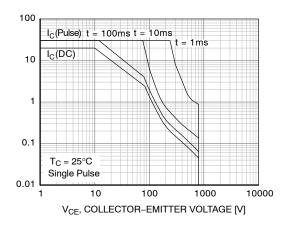


Figure 9. Forward Bias Safe Operating Area

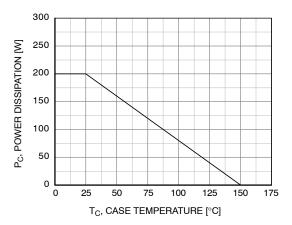


Figure 11. Power Derating

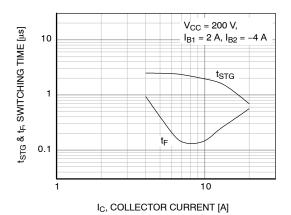


Figure 8. Resistive Load Switching Time

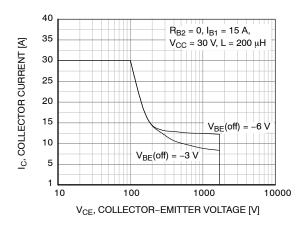
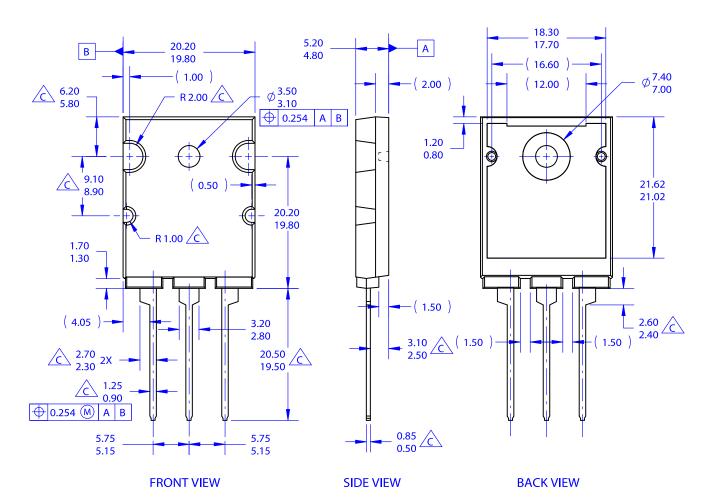



Figure 10. Reverse Bias Safe Operating Area

TO-264-3LD CASE 340CA ISSUE O

DATE 31 OCT 2016

3.70 3.30 4.80 BOTTOM VIEW

NOTES:

- A. PACKAGE REFERENCE: JEDEC TO264 VARIATION AA.
- B. ALL DIMENSIONS ARE IN MILLIMETERS.
- OUT OF JEDEC STANDARD VALUE.

 D. DIMENSION AND TOLERANCE AS PER ASME
 Y14.5-1994.
 - E. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS.

DOCUMENT NUMBER:	98AON13860G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-264-3LD		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales