

High Voltage High Speed Power Switch Application

- Wide Safe Operating Area
- Built-in Free Wheeling diodeSuitable for Electronic Ballast Application
- Suitable for Electronic Ballast Application
- Small Variance in Storage Time

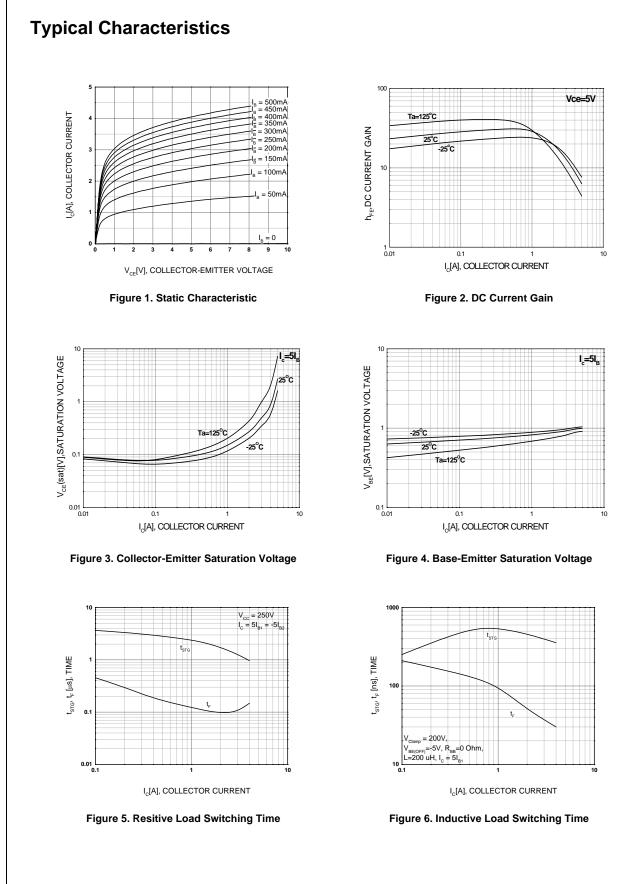
Absolute Maximum Ratings T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V _{CBO}	Collector-Base Voltage	700	V	
V _{CEO}	Collector-Emitter Voltage	400	V	
V _{EBO}	Emitter-Base Voltage	12	V	
I _C	Collector Current (DC)	4	А	
I _{CP}	* Collector Current (Pulse)	8	A	
I _B	Base Current (DC)	2	А	
I _{BP}	* Base Current (Pulse)	4	А	
P _C	Collector Dissipation (T _C =25°C)	70	W	
T _{STG}	Storage Temperature	- 65 ~ 150	°C	

* Pulse Test Pulse Width = 5ms, Duty Cycle $\geq 1.0\%$

Electrical Characteristics T_C=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CBO}	Collector-Base Breakdown Voltage	$I_{C} = 1mA, I_{E} = 0$	700			V
BV _{CEO}	Collector-Emitter Breakdown Voltage	$I_{\rm C} = 5 {\rm mA}, \ I_{\rm B} = 0$	400			V
BV _{EBO}	Emitter-Base Breakdown Voltage	$I_{E} = 1mA, I_{C} = 0$	12			V
I _{CES}	Collector Cut-off Current	$V_{CE} = 700V, V_{EB} = 0$			100	mA
I _{CEO}	Collector Cut-off Current	V _{CE} = 400V, IB = 0			250	mA
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 12V, I_{C} = 0$			100	mA


July 2008

h _{FE}	DC Current Gain		10 8		40	
V _{CE} (sat)	Collector-Emitter Saturation Voltage	$I_{C} = 0.5A, I_{B} = 0.1A$ $I_{C} = 1A, I_{B} = 0.2A$ $I_{C} = 2.5A, I_{B} = 0.5A$			0.7 1.0 1.5	V
V _{BE} (sat)	Base-Emitter Saturation Voltage	$\begin{split} I_{C} &= 0.5A, \ I_{B} = 0.1A \\ I_{C} &= 1A, \ I_{B} = 0.2A \\ I_{C} &= 2.5A, \ I_{B} = 0.5A \end{split}$			1.1 1.2 1.3	V
V _f	Internal Diode Forward Voltage Drop	I _F = 2A			2.5	V
Inductive Lo	oad Switching (V _{CC} = 200V)					
t _{stg}	Storage Time	I _C = 2A, I _{B1} = 0.4A		0.6		μS
tf	Fall Time	$V_{BE}(off) = -5V, L = 200\mu H$		0.1		
Resistive L	oad Switching (V _{CC} = 250V)			•		
t _{stg}	Storage Time	$I_{\rm C} = 2A, \ I_{\rm B1} = I_{\rm B2} = 0.4A$			2.9	μS
tf	Fall Time	T _P = 30μs		0.2		

* Pulse test: PW \leq 300 μ s, Duty cycle \leq 2%

Thermal Characteristics

Symbol	Parameter	Max.	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	1.78	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	62.5	°C/W

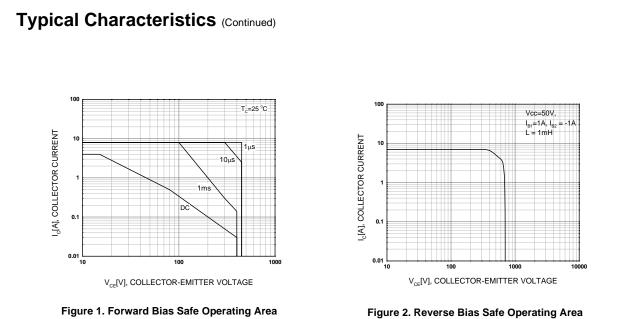
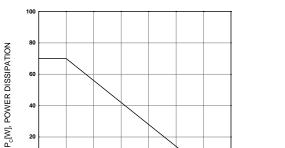
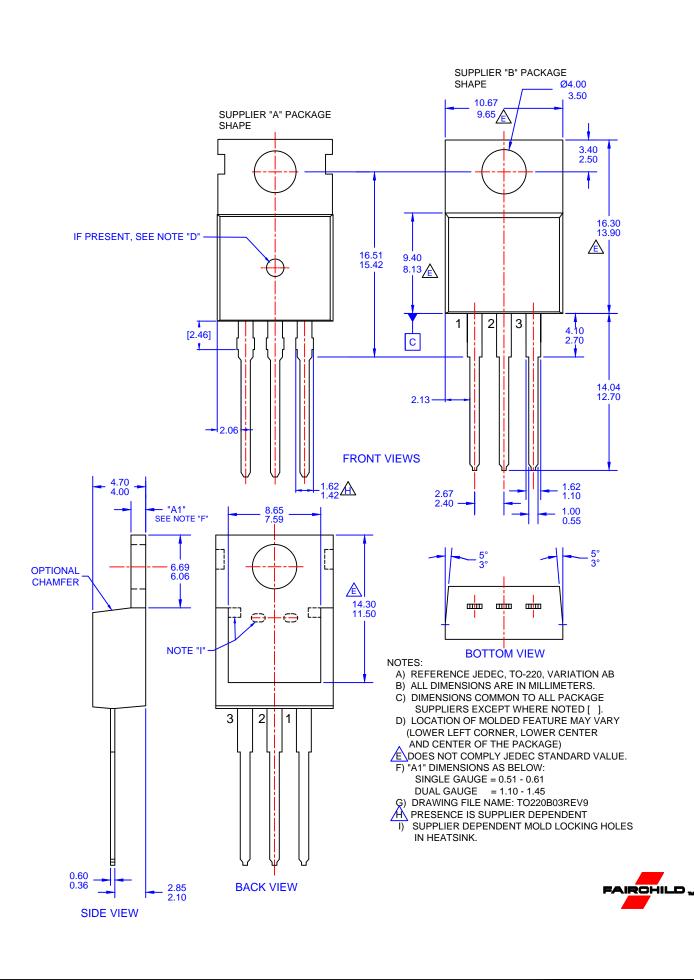



Figure 1. Forward Bias Safe Operating Area

100 T_c[°C], CASE TEMPERATURE

125

150 175


Figure 3. Power Derating

FJP5304D — NPN Silicon Transistor

0 L 0

25

50 75

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC