
Preliminary

This is a product that has fixed target specifications but are subject Ramtron International Corporation
to change pending characterization results. 1850 Ramtron Drive, Colorado Springs, CO 80921
 (800) 545-FRAM, (719) 481-7000
Rev. 1.0 http://www.ramtron.com
April 2008 Page 1 of 53

FM6124
Event Data Recorder with F-RAM

OVERVIEW
The FM6124 is an Event Data Recorder with F-RAM
memory that provides an integrated solution for digital
events monitoring. Like PLC devices, the FM6124 provides
simple device settings and data retrieval allowing easy
system integration to short design-in cycle.
Access to the device is performed through an I2C interface
able to sustain communication speed up to 100kbps. The I2C
interface also provides the ability to place the FM6124 away
from the host system and closer to the equipment and/or
sensors it is intended to monitor. It also allows multiple
devices to share the same I2C bus.
The FM6124 features 12 digital inputs that can be
individually configured to trigger event recording on either a
rising or a falling edge. An on-chip Real Time Clock (RTC)
with calendar provides a timestamp for each event recorded
and can also be used as system clock and calendar. The
event timestamp resolution is one second.
The on-chip 32KBytes F-RAM memory provides
nonvolatile storage for event recording and a portion of it
can also be used for nonvolatile User Data storage. Access
to the User Data is performed like any other I2C memory
device. Up to 32KB F-RAM can be reserved for Events
recording. F-RAM can be treated as RAM and
reads/writes at the speed of the I2C bus. It also offers
effectively unlimited write endurance unlike other
nonvolatile memory technologies.
Recorded events consist of 8 bytes. One byte defines the
event code and the 7 remaining bytes contain timestamp
data. The events are recorded in a circular buffer fashion
and they are retrieved through I2C accessible registers.
The FM6124 can capture and record up to 10K Events every
second if no I2C communication in taking place on the I2C
bus. In that case, the Events must last 15µs. During I2C
transactions, the device can still capture and record up to 5K
Events per second having a minimum duration of 25µs.
Other features of the FM6124 include a 16-bit battery
backed-up event counter, an early power fail monitoring
input, and a user programmable 64-bit serial number.
The FM6124 is powered by a 3.0 to 3.6V supply, can
function over the industrial temperature range, and is
available in a QFP-44 package.

QFP-44 PRELIMINARY PACKAGE PINOUT

FEATURES
Event Monitoring Features
• Continuously Monitor Input State Change
• 12 Digital Events Inputs Pins
• Configurable Events Trigger on Rising/Falling Edge
• Up to 10K Events per second Capture/Record rate
• Event duration can be as short as 15µS
• RTC Timestamp for each Recorded Event
• I2C Interface for Configuration and Data Read/Write
• Configurable F-RAM Segment Size for Event Recording

High Integration Device Replaces Multiple Parts
• Serial Nonvolatile Memory
• Real-time Clock (RTC) with Alarm
• Low VDD Detection Drives Reset
• Watchdog Window Timer
• Early Power-Fail Warning/NMI
• 16-bit Nonvolatile Event Counter
• Serial Number with Write-lock for Security

Ferroelectric Nonvolatile RAM
• Configurable Size (Up to 24KB) F-RAM for User Data
• Dedicated I2C ID for User F-RAM
• Unlimited Read/Write Endurance
• 10 year Data Retention
• NoDelay™ Writes

Real-time Clock/Calendar
• Backup Current under 1 µA
• Seconds through Centuries in BCD format
• Tracks Leap Years through 2099
• Uses Standard 32.768 kHz Crystal
• Software Calibration
• Supports Battery or Capacitor Backup

Processor Companion
• Active-low Reset Output for VDD and Watchdog
• Programmable Low-VDD Reset Thresholds
• Manual Reset Filtered and Debounced
• Programmable Watchdog Window Timer
• Nonvolatile Event Counter
• Comparator for Power-Fail Interrupt or Other Use
• 64-bit Programmable Serial Number with Lock

Easy to Use Configurations
• Operates from 3.0 to 3.6V
• QFP-44 10x10mm “Green”/RoHS Package
• Industrial Temperature Range -40°C to +85°C

APPLICATIONS

o Activity Monitoring
o Industrial Automation Event Recording
o Environmental Monitoring
o Vehicle & Pedestrian Traffic Counting
o Equipment Use monitoring
o Maintenance scheduling

 FM6124 Event Data Recorder

Rev. 1.1
Dec. 2007 Page 2 of 28

PIN DESCRIPTION
Pin Name I/O Function

1 VSS VSS Ground

2 ACS O

Alarm/Calibration/SquareWave: This is an open-drain output that requires an external pull-up resistor. In normal operation, this
pin acts as the active-low alarm output. In Calibration mode, a 512 Hz square-wave is driven out. In SquareWave mode, the user
may select a frequency of 1, 512, 4096, or 32768 Hz to be used as a continuous output. The SquareWave mode is entered by
clearing the AL/SW and CAL bits in register 18h.

3 CNT I Event Counter Input: This input increments the counter when an edge is detected on this pin. The polarity is programmable and
the counter value is nonvolatile or battery-backed, depending on the mode. This pin should be tied to ground if unused.

4 INT O
Active Low output that can be configured to generate a low level when:
-Event buffer is full
-Activity on event input

5 RESET I Device Reset Input. This active-low input clears all volatile registers. Leave unconnected if not used, pin has internal pull-up.
6 IN4 Event Input Pin 4
7 IN5 Event Input Pin 5
8 IN6 Event Input Pin 6
9 IN7 Event Input Pin 7

10 SCL Serial Clock: The serial clock input for the two-wire interface. Data is clocked out of the device on the SCL falling edge, and
clocked in on the SCL rising edge. A pull-up resistor is required.

11 SDA Serial Data/Address: This is a bi-directional pin used to shift serial data and addresses for the two-wire interface. It employs an
open-drain output and is intended to be wire-OR’d with other devices on the two-wire bus. A pull-up resistor is required.

12 VSS VSS Ground
13 VDD Supply Supply voltage
14 IN8 I Event Input Pin 8
15 IN9 I Event Input Pin 9
16 IN10 I Event Input Pin 10
17 IN11 I Event Input Pin 11
18 A0
19 A1

I Address 1-0: These pins are used to select one of up to 4 devices of the same type on the same two-wire bus. To select the
device, the address value on the three pins must match the corresponding bits contained in the device address.

20-24 NC NC Leave these pins unconnected
25 VDD Supply Supply voltage

26, 27 NC NC Leave these pins unconnected
28 IN3 I Event Input Pin 3
29 IN2 I Event Input Pin 2
30 IN1 I Event Input Pin 1
31 IN0 I Event Input Pin 0

32 X1 32.768 kHz crystal connection. When using an external oscillator, apply the clock to X1 and a DC mid-level to X2 (see Crystal
Type section for suggestions).

33 X2 32.768 kHz crystal connection
34 VSS Ground

35 RSTB NC Reset Out: This active-low output is open drain with weak pull-up. It is also an input when used as a manual reset. This pin
should be left floating if unused.

36 PFO Early Power-fail Output: This pin is the early power-fail output and is typically used to drive a microcontroller NMI pin. PFO
drives low when the PFI voltage is <1.5V.

37 PFI Early Power-fail Input: Typically connected to an unregulated power supply to detect an early power failure. This pin must be
tied to ground if unused.

38 VBAK Backup supply voltage: A 3V battery or a large value capacitor. If no backup supply is used, this pin should be tied to VSS and
the VBC bit should be cleared.

39 VDD Supply Supply voltage
40-44 NC NC Leave these pins unconnected

QFP-44 PACKAGE PINOUT

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 3 of 53

FUNCTIONAL BLOCKS
The functional block diagram of the FM6124 is represented in the figure below. The FM6124 combines the
following:

• 12 input pins individually configurable for Event recording
• Event Buffer memory for event storage implemented as F-RAM
• User accessible F-RAM memory
• User Accessible Real time clock (RTC) with alarm
• MCU companion features such as Event counter, Watchdog Timer, Power Fails Input/Output and

programmable serial number
• I2C communication interface supporting two device IDs: one for User-F-RAM (0xA0) and one for

Event Recorder/MCU Companion (0xD0)

I2C
Interface

SDA

A1

RSTB

SCL

VDD

RTC

-
+ RTC Registers

X1

X2

Watchdog

LV Detect

Switched
Power

512Hz/SqW

Battery BackedNonvolatile

A0

Battery Backed Event Counter

Alarm

VSW

NV/BB User Programmable

ManualReset

VBAK

IN4

IN5

IN6

IN7

IN0

IN1

IN2

IN3

IN8

IN9

IN10

IN11

Events Detection and Time
Stamping Unit

Event Recorder Comfiguration
Registers

User Data
F-RAM Zone

F-RAM based
Events Recording

Buffer

0KB

32KB

Adjustable boundary 0KB – 24KB

Event Retrieval Registers

F-RAM Access

Event Recorder
Functions

+
RTC & MCU
companion
Features

I2C ID

Sorting Unit

Serial Number

MCU Companion Features
Registers

AlarmRTC Calibration

CNT

+
-

PFO

PFI

1.5V

External,
User

supplied
32.768KHz

Crystal

ACS

FIGURE 1. FM6124 BLOCK DIAGRAM

 FM6124 Event Data Recorder

Rev. 1.1
Dec. 2007 Page 4 of 28

Two-wire (I2C) Interface
The FM6124 employs an industry standard two-wire
(I2C) bus that is familiar to many users. This product
is unique since it incorporates two logical devices in
one chip. Each logical device can be accessed
individually and appear to the system software to be
two separate products. One is the nonvolatile F-
RAM memory device. It has a Slave Address (Slave
ID = 1010b) that operates the same as a stand-alone
memory device. The second device is Event Data
Recorder and Companion which has a different
Slave Address (Slave ID = 1101b).

By convention, any device that is sending data onto
the bus is the transmitter while the target device for
this data is the receiver. The device that is
controlling the bus is the master. The master is
responsible for generating the clock signal for all
operations. Any device on the bus that is being
controlled is a slave. The FM6124 is always a slave
device.

The bus protocol is controlled by transition states in
the SDA and SCL signals. There are four conditions:
Start, Stop, Data bit, and Acknowledge. The figure
below illustrates the signal conditions that specify
the four states.

Stop
(Master)

Start
(Master)

7

Data bits
(Transmitter)

6 0

Data bit
(Transmitter)

Acknowledge
(Receiver)

SCL

SDA

FIGURE 2. I2C BUS CONDITIONS AND TERMINOLOGY

Start Condition
A Start condition is indicated when the bus master
drives SDA from high to low while the SCL signal is
high. All read and write transactions begin with a
Start condition. An operation in progress can be
aborted by asserting a Start condition at any time.
Aborting an operation using the Start condition will
ready the FM6124 for a new operation.

If the power supply drops below the specified VTP
during operation, any 2-wire transaction in progress
will be aborted and the system must issue a Start
condition prior to performing another operation.

Stop Condition
A Stop condition is indicated when the bus master
drives SDA from low to high while the SCL signal is
high. All operations must end with a Stop condition.
If an operation is pending when a stop is asserted,
the operation will be aborted. The master must have
control of SDA (not a memory read) in order to
assert a Stop condition.

Data/Address Transfer
All data transfers (including addresses) take place
while the SCL signal is high. Except under the two
conditions described above, the SDA signal should
not change while SCL is high.

Acknowledge
The Acknowledge (ACK) takes place after the 8th
data bit has been transferred in any transaction.
During this state the transmitter must release the
SDA bus to allow the receiver to drive it. The
receiver drives the SDA signal low to acknowledge
receipt of the byte. If the receiver does not drive
SDA low, the condition is a No-Acknowledge
(NACK) and the operation is aborted.

The receiver might NACK for two distinct reasons.
First is that a byte transfer fails. In this case, the
NACK ends the current operation so that the part can
be addressed again. This allows the last byte to be
recovered in the event of a communication error.

Second and most common, the receiver does not
send an ACK to deliberately terminate an operation.
For example, during a read operation, the FM6124
will continue to place data onto the bus as long as the
receiver sends ACKs (and clocks). When a read
operation is complete and no more data is needed,
the receiver must NACK the last byte. If the receiver
ACKs the last byte, this will cause the FM6124 to
attempt to drive the bus on the next clock while the
master is sending a new command such as a Stop.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 5 of 53

Slave Address
The first byte that the FM6124 expects after a Start
condition is the slave address. As shown in figures
below, the slave address contains the Slave ID,
Device Select address, and a bit that specifies if the
transaction is a read or a write.

The FM6124 has two Slave Addresses (Slave IDs)
associated with two logical devices. To access the
memory device, bits 7-4 should be set to 1010b. The
other logical device within the FM6124 is the Event
Recorder configuration and data access, the real-time
clock and MCU companion. To access this device,
bits 7-4 of the slave address should be set to 1101b.
A bus transaction with this slave address will not
affect the memory in any way. The figures below
illustrate the two Slave Addresses.

The Device Select bits allow multiple devices of the
same type to reside on the 2-wire bus. The device
select bits (bits 2-1) select one of four parts on a two-
wire bus. They must match the corresponding value
on the external address pins in order to select the
device. Bit 0 is the read/write bit. A “1” indicates a
read operation, and a “0” indicates a write operation.

 1 0 1 0 X A1 A0 R/W

Slave ID
Device
Select

7 6 5 4 3 2 1 0

FIGURE 3. SLAVE ADDRESS - MEMORY

FIGURE 4. SLAVE ADDRESS – EDR/COMPANION

Addressing Overview – Memory
After the FM6124 acknowledges the Slave Address,
the master can place the memory address on the bus
for a write operation. The address requires two bytes.

The first is the MSB (upper byte). Following the
MSB is the LSB (lower byte) which contains the
remaining eight address bits. The address is latched
internally. Each access causes the latched address to
be incremented automatically. The current address is
the value that is held in the latch, either a newly

written value or the address following the last access.
The current address will be held as long as VDD >
VTP or until a new value is written. Accesses to the
clock do not affect the current memory address.
Reads always use the current address. A random read
address can be loaded by beginning a write operation
as explained below.

After transmission of each data byte, just prior to the
Acknowledge, the FM6124 increments the internal
address. This allows the next sequential byte to be
accessed with no additional addressing externally.
After the last address is reached, the address latch
will roll over to 0000h. There is no limit to the
number of bytes that can be accessed with a single
read or write operation.

Addressing Overview – EDR, RTC & Companion
The Event Recorder, RTC, and Processor
Companion operate in a similar manner to the
memory, except that it uses only one byte of address.
Addresses 00h to 33h corresponds to special function
registers. Attempting to load addresses above 33h is
an illegal condition; the FM6124 will return a
NACK and abort the 2-wire transaction.

Data Transfer
After the address information has been transmitted,
data transfer between the bus master and the
FM6124 begins. For a read, the FM6124 will place 8
data bits on the bus then wait for an ACK from the
master. If the ACK occurs, the FM6124 will transfer
the next byte. If the ACK is not sent, the FM6124
will end the read operation. For a write operation, the
FM6124 will accept 8 data bits from the master then
send an Acknowledge. All data transfer occurs MSB
(most significant bit) first.

Memory Write Operation
All memory writes begin with a Slave Address, then
a memory address. The bus master indicates a write
operation by setting the slave address LSB to a 0.
After addressing, the bus master sends each byte of
data to the memory and the memory generates an
Acknowledge condition. Any number of sequential
bytes may be written. If the end of the address range
is reached internally, the address counter will wrap
to 0000h. Internally, the actual memory write occurs
after the 8th data bit is transferred. It will be complete
before the Acknowledge is sent. Therefore, if the
user desires to abort a write without altering the
memory contents, this should be done using a Start
or Stop condition prior to the 8th data bit. The figures
that follow illustrate a single- and multiple-writes to
memory.

 1 1 0 1 X A1 A0 R/W

Slave ID

7 6 5 4 3 2 1 0

Device
Select

 FM6124 Event Data Recorder

Rev. 1.1
Dec. 2007 Page 6 of 28

FIGURE 5. SINGLE BYTE MEMORY WRITE

FIGURE 6. MULTIPLE BYTE MEMORY WRITE

Memory Read Operation
There are two types of memory read operations. They
are current address read and selective address read. In
a current address read, the FM6124 uses the internal
address latch to supply the address. In a selective
read, the user performs a procedure to first set the
address to a specific value.

Current Address & Sequential Read
As mentioned above the FM6124 uses an internal
latch to supply the address for a read operation. A
current address read uses the existing value in the
address latch as a starting place for the read
operation. The system reads from the address
immediately following that of the last operation.

To perform a current address read, the bus master
supplies a slave address with the LSB set to 1. This
indicates that a read operation is requested. After
receiving the complete device address, the FM6124
will begin shifting data out from the current address
on the next clock. The current address is the value
held in the internal address latch.

Beginning with the current address, the bus master
can read any number of bytes. Thus, a sequential read
is simply a current address read with multiple byte
transfers. After each byte the internal address counter
will be incremented.

Each time the bus master acknowledges a byte,
this indicates that the FM6124 should read out
the next sequential byte.

There are four ways to terminate a read operation.
Failing to properly terminate the read will most likely
create a bus contention as the FM6124 attempts to
read out additional data onto the bus. The four valid
methods follow.

1. The bus master issues a NACK in the 9th clock

cycle and a Stop in the 10th clock cycle. This is
illustrated in the diagrams below and is
preferred.

2. The bus master issues a NACK in the 9th clock
cycle and a Start in the 10th.

3. The bus master issues a Stop in the 9th clock
cycle.

4. The bus master issues a Start in the 9th clock
cycle.

If the internal address reaches the top of memory, it
will wrap around to 0000h on the next read cycle.
The figures below show the proper operation for
current address reads.

Selective (Random) Read
There is a simple technique that allows a user to
select a random address location as the starting point
for a read operation. This involves using the first
three bytes of a write operation to set the internal
address followed by subsequent read operations.

S A Slave Address 0 Address MSB A Data Byte A P

By Master

By FM6124

Start Address & Data Stop

Acknowledge

Address LSB A

S A Slave Address 0 Address MSB A Data Byte A P

By Master

By FM6124

Start
Address & Data

Stop

Acknowledge

Address LSB A Data Byte A

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 7 of 53

To perform a selective read, the bus master sends out
the slave address with the LSB set to 0. This specifies
a write operation. According to the write protocol,
the bus master then sends the address bytes that are
loaded into the internal address latch. After the
FM6124 acknowledges the address, the bus master
issues a Start condition. This simultaneously aborts
the write operation and allows the read command to
be issued with the slave address LSB set to a 1. The
operation is now a read from the current address.
Read operations are illustrated below.

RTC/Companion Write Operation
All RTC and Companion writes operate in a similar
manner to memory writes. The distinction is that a
different device ID is used and only one byte address
is needed instead of two. Figure 10 illustrates a single
byte write to this device.

RTC/Companion Read Operation
As with writes, a read operation begins with the
Slave Address. To perform a register read, the bus

master supplies a Slave Address with the LSB set to
1. This indicates that a read operation is requested.
After receiving the complete Slave Address, the
FM6124 will begin shifting data out from the current
register address on the next clock. Auto-increment
operates for the special function registers as with the
memory address. A current address read for the
registers look exactly like the memory except that the
device ID is different.

The FM6124 contains two separate address registers,
one for the memory address and the other for the
register address. This allows the contents of one
address register to be modified without affecting the
current address of the other register. For example,
this would allow an interrupted read to the memory
while still providing fast access to an RTC register. A
subsequent memory read will then continue from the
memory address where it previously left off, without
requiring the load of a new memory address.
However, a write sequence always requires an
address to be supplied.

FIGURE 7. CURRENT ADDRESS MEMORY READ

FIGURE 8. SEQUENTIAL MEMORY READ

S ASlave Address 1 Data Byte 1 P

By Master

By FM6124

Start Address
Stop

Acknowledge

No
Acknowledge

Data

S ASlave Address 1 Data Byte 1 P

By Master

By FM6124

Start Address
Stop

Acknowledge

No
Acknowledge

Data

Data Byte A

Acknowledge

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 8 of 53

FIGURE 9. SELECTIVE (RANDOM) MEMORY READ

FIGURE 10. BYTE REGISTER WRITE

Delay When Switching from EDR/Companion ID
to User F-RAM ID
When switching from FM6124 EDR/Companion ID
to the User F-RAM ID, there will be a delay of
~100µs during which the FM6124 may not
acknowledge to I2C ID sent to it. This delay is
required for the internal logic of the FM6124 to
perform the switchover from one ID to another.

If the host attempts to initiate a transaction to the
FM6124 with a different slave address within this

100µs period, it is recommended that the host initiate
a read command to the FM6124 with the ID projected
to be used with the R/W bit set to 1 and then send a
STOP if the FM6124 fails to respond.

At 100 kHz I2C communication speed a 100µS delay
correspond to approximately one I2C read command.
This means that if the FM6124 fails to respond to the
first read operation, it will respond on the second one.

S ASlave Address 0 A Data Byte A P

By Master Start Address & Data Stop

Acknowledge
By FM6124

Register Address

S A Slave Address 1 Data Byte 1 P

By Master

By FM6124

Start Address
Stop

No
Acknowledge

Data

S A Slave Address 0 Address MSB A

Start
Address

Acknowledge

Address LSB A

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 9 of 53

Register Map
The FM6124 Event Recorder, RTC, and processor companion functions are accessed via 51 special function
registers, which are mapped to unique commands. The interface protocol is described in details in the following
pages. The registers contain timekeeping data, alarm settings, control bits, and information flags. A description of
each register follows the summary table.

TABLE 1. FM6124 REGISTER MAP OVERVIEW

Address Data Function Type
 7 6 5 4 3 2 1 0

0x33 10 Years Year Event BCD Year RO
0x32 10 Months Month Event BCD Month RO
0x31 10 Date Date Event BCD Date RO
0x30 Day of week Event BCD Day of Week RO
0x2F 10 Hours Hours Event BCD Hours RO
0x2E 10 Minutes Minutes Event BCD Minutes RO
0x2D 10 Seconds Seconds Event BCD Seconds RO
0x2C Event Code Event Code RO
0x2B Unread Events Counter MSB RO
0x2A

Number of Unread Events Recorded
Unread Events Counter LSB RO

0x29 P11 P10 P9 P8 P7 P6 P5 P4 Pin Pass-through B RO
0x28 Reserved P3 P2 P1 P0 Pin Pass-through A RO
0x27 Reserved NBEV SNAP Pin State– #Events snapshot WO
0x26 P11 P10 P9 P8 P7 P6 P5 P4 Pin Event Enable B R/W
0x25 Reserved P3 P2 P1 P0 Pin Event Enable A R/W
0x24 P11 P10 P9 P8 P7 P6 P5 P4 Pin Event Rise/Fall B R/W
0x23 Reserved P3 P2 P1 P0 Pin Event Rise/Fall A R/W
0x22 P11 P10 P9 P8 P7 P6 P5 P4 Pin Event Interrupt B R/W
0x21 CLEAR BF B75F BHF P3 P2 P1 P0 Pin Event Interrupt A R/W
0x20 EBUFSIZE[1:0] ERR DIR EDRCMD[3:0] Event Recorder Control R/W
0x1D ~M 0 0 10 mo Month Alarm BCD Month R/W
0x1C ~M 0 10 date Date Alarm BCD Date R/W
0x1B ~M 0 10 hours Hours Alarm BCD Hours R/W
0x1A ~M 10 minutes Minutes Alarm BCD Minutes R/W
0x19 ~M 10 seconds Seconds Alarm BCD Seconds R/W
0x18 SNL AL/SW F1 F0 VBC FC VTP1 VTP0 Companion Control R/W
0x17 Serial Number Byte 7 Serial number 7 R/W
0x16 Serial Number Byte 6 Serial number 6 R/W
0x15 Serial Number Byte 5 Serial number 5 R/W
0x14 Serial Number Byte 4 Serial number 4 R/W
0x13 Serial Number Byte 3 Serial number 3 R/W
0x12 Serial Number Byte 2 Serial number 2 R/W
0x11 Serial Number Byte 1 Serial number 1 R/W
0x10 Serial Number Byte 0 Serial number 0 R/W
0x0F Edge Count MSB RO
0x0E

16-bit “CNT Pin” Edge Count
Edge Count LSB RO

0x0D NVC - - - RC WC POLL CP Edge Count Control R/W
0x0C WDE - - WDET4 WDET3 WDET2 WDET1 WDET0 Watchdog flags R/W
0x0B - - - WDST4 WDST3 WDST2 WDST1 WDST0 Watchdog flags R/W
0x0A - - - - WR3 WR2 WR1 WR0 Watchdog Restart R/W

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 10 of 53

0x09 EWDF LWDF POR LB - - - Watchdog flags R/W
0x08 10 year Year BCD Year R/W
0x07 10 month Month BCD Month R/W
0x06 10 date Date BCD Date R/W
0x05 Day of week BCD Day of Week R/W
0x04 10 hours Hours BCD Hours R/W
0x03 10 minutes Minutes BCD Minutes R/W
0x02 10 seconds Seconds BCD Seconds R/W
0x01 CALS CAL4 CAL3 CAL2 CAL1 CAL0 CAL Control R/W
0x00 ~OSCEN AF CF AEN reserved CAL W R RTC Control R/W

Battery-backed = Nonvolatile = BB/NV User Programmable =

Note: When the device is first powered up and programmed, all timekeeping registers must be written because the battery-backed
register values cannot be guaranteed. The table below shows the default values of the nonvolatile registers and some of the
battery-backed bits. All other register values should be treated as unknown.

Default Register Values
Address Hex Value Address Hex Value

33h 0x00 1Dh 0x81
32h 0x00 1Ch 0x81
31h 0x00 1Bh 0x80
30h 0x00 1Ah 0x80
2Fh 0x00 19h 0x80
2Eh 0x00 18h 0x40
2Dh 0x00 17h 0x00
2Ch 0x00 16h 0x00
2Bh 0x00 15h 0x00
2Ah 0x00 14h 0x00
29h 0x00 13h 0x00
28h 0x00 12h 0x00
27h 0x00 11h 0x00
26h 0x00 10h 0x00
25h 0x00 0Fh 0x00
24h 0x00 0Eh 0x00
23h 0x00 0Dh 0x01
22h 0x00 0Ch 0x00
21h 0x00 0Bh 0x00
20h 0x00 01h 0x00

1Eh-1Fh undefined 00h 0x80

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 11 of 53

Event Recorder with Timestamp
The main feature of the FM6124 is its event recording
capability. The FM6124 can monitor events occurring on
each of its 12 digital input pins. When an event occurs the
Event is recorded into the Event Buffer F-RAM memory
along with current the timestamp. The recorded event data
is retrieved through I2C mapped registers.

The FM6124 is a highly integrated part able to operate in
standalone mode and requiring a few external components
to operate.

Dedicated F-RAM for Event Recording
Based on profiles set by the user, Events are recorded in
nonvolatile F-RAM memory. Each event is timestamped
automatically. A programmable amount of nonvolatile
storage is available to record events (25%, 50%, 75% or
100%). Event recording is triggered by pin state changes.
Events will be recorded in a circular buffer unless emptied
by the host.

A host processor can download the Event log at any time
via the I2C interface. In addition the various resources such
as the input pins and the RTC can be read directly through
the serial interface.

Event Definition
An Event is defined as either a rising or a falling transition
occurring on any given input pin. Each one of the input
pin can be individually configured to react on a rising edge
or a falling edge.

Two registers located at addresses 0x23 and 0x24 allow
one to individually configure each one of the FM6124
Input pin to trigger an event recording on either a Low to
High or a High to Low transition

• Setting the corresponding bit to 1 will trigger an
Event recording on a Low to High transition

• Setting the corresponding bit to 0 will trigger an

Event recording on a High to Low transition

FIGURE 11. EVENT TYPE SUPPORTED

Simultaneous transitions on distinct input pins configured
to react to these transitions will be considered as distinct
events and they will be recorded as such.

FIGURE 12. EVENT DETECTION AND STORAGE INTO F-RAM

The recording order of simultaneous events will be related
to the input numbering. For example, if events occur
simultaneously on IN0, IN1, IN7 and IN10, the first event
recorded will be the one occurring on IN0 followed by the
one on IN1 then IN7 and IN10.

When simultaneous events occur, it is possible that the
timestamp recorded varies by 1 second.

Event Timestamp Content
Each time an event is recorded, the following parameters
are saved in the nonvolatile Event buffer:

FIGURE 13. EVENT TIMESTAMP CONTENT

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 12 of 53

Event Memory/User F-RAM Memory Size
Configuration
The FM6124 contains a total of 32KBytes (256Kb) of F-
RAM memory on chip. The F-RAM memory can be
configured to serve for both Event Recording and for User
Data saving. The portion of the memory reserved for User
Data is defined through register and occupies the lower
portion of the address range.

The upper portion of the F-RAM addresses is used to store
Event type and timestamp information. The data associated
with Event is accessible only through I2C Mapped
registers.

The boundary between User FRAM and Event Recording
FRAM is adjusted through configuration register in the
Event recording portion of the device. The memory
boundary can be changed at any time, however each time it
is changed the entire F-RAM memory (Event Recording/
User Data) will be erased.

The portion of the F-RAM defined as User Memory Data
memory use consistent two-byte addressing for the
memory device rendering it code compatible to the
standalone memory counterparts, such as the FM24xx but
with the ability to be configured up to 24KB in size.

Up to 4000 events can be saved in the FM6124 Event
buffer F-RAM memory. A percentage of the F-RAM can
also be configured as User F-RAM that is accessed like
standard I2C based F-RAM and using a dedicated I2C
device ID for User F-RAM access.

The EBUFSIZE[1:0] portion of the Event Data Recorder
control register (address 0x20) defines the portion of
memory reserved for Event recording and User F-RAM
size as shown in the table below:

EBUFSIZE[1:0] Max number of Events User F-RAM size
00 4000 0
01 3000 64 Kb
10 2000 128 Kb
11 1000 192 Kb

When the entire F-RAM memory is reserved for Event
recording, there will be no User F-RAM available and the
FM6124 will stop acknowledging on any I2C transactions
initiated with F-RAM / EEPROM device ID.

This allows one to share the I2C bus between up to four
FM6124 and up to eight I2C based memory devices.

Event Buffer Architecture
The structure of the Event Buffer memory is analogue to a
Circular buffer: Initially the Event data will be stored
from a base address that we will call FP, for First pointer

and up to the maximum number of Event that the FM6124
have been configured to hold. We will call this address
Nmax.

Initially the FP pointer is likely to be at lowest possible F-
RAM address. However, when the event buffer is full the
address of the FP pointer will be incremented for each new
event recorded.

FIGURE 14. EVENT BUFFER OVERVIEW

Event Buffer Pointers
The management of Event recording and retrieval is
handled using nonvolatile F-RAM based virtual pointers.

The addresses where these pointers point to are not directly
accessible through the I2C interface however the FM6124
provides commands to control the way those pointers
behave.

Four Pointers are defined:

FP: First pointer
RP: Read Pointer
SP: Stream Pointer
WP: Write pointer

First pointer

The FP pointer is the reference pointer which is fixed for a
given Event recorder configuration.

The first pointer actually indicates the position of oldest
event recorded and it is used as a reference. The
movements of the RP and WP pointers are referenced to
the FP pointer.

Each time the FM6124 configuration is changed through
EBUFSIZE[1:0] register, the position of FP will be reset to
the lowest F-RAM address and it will not move until the
Event buffer is filled.

When the number of event recorded exceeds the buffer
capacity, the FP pointer address will be incremented each

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 13 of 53

time a new event is recorded in order to point to the oldest
event.

Write pointer

The Write pointer is used by the Event recorder to indicate
where the next Event will be recorded in the event buffer.

The WP pointer can only move in one direction: up from
the FP address. For this reason the Event storing can be
seen as a stack: more recent events being stored on top of
older ones.

Eventually the WP pointer can roll over the maximum
address. When this situation occurs the FP pointer will be
incremented for each new event recorded. In applications
where the EDR is placed close to the Host processor it is
possible to configure the Event recorder to activate the
INT output for the following situations:

• Buffer Full
• Buffer full at 75%
• Buffer full at 50%

This is done by setting the BF, B75F, B50F bit
respectively in the PINEVENTA register

For situations where the FM6124 is remote from the host
processor, it is always possible for the host processor to
retrieve the number of event present in the event buffer by
reading the Event buffer counter 16-bit register.

Read Pointer
The read pointer RP points to the next event to be read.
This pointer is used to load the next (or previous) event
data into the Event data read back registers (addresses
0x2C to 0x33) whenever the GET command
(EDRCMD[3:0] = 0001 is sent to the FM6124.

Contrary to WP, the Read pointer can be configured to
move from older to newer events but also from newer
event toward older ones.

The direction of the RP pointer depends on:

• The amount of events stored into the Event
memory buffer

• The value of the READDIR bit

When the READDIR bit is cleared, the RP will fetch event
from FP toward WP. However RP cannot move farther
than WP-1. In situation where FP has reached WP-1 any
attempt to read extra events will make the Event data
recorder to fill the Event data read back registers with
0xFF, set the ERR bit of the Event Data recorder
configuration register and the RP address will not be
incremented.

When the READDIR bit is set and the GET command is
initiated, the RP will fetch the data associated with the next

events toward FP and place its content into the Event Data
Read back registers. This provided that the RP pointer is
“away” and up from FP address.

In the case where the GET command is sent to the Event
Recorder while the RP = FP, if there is one event recorded
at FP position its content will be placed in the Event Data
register.

However if from that point a second attempt is made to
read Event Data, the Event Data Recorder will fill the
Event data readback registers with 0xFF, set the ERR bit
of the Event Data recorder configuration register and the
RP address will not be incremented (decremented).

Stream Pointer
The stream pointer is a dedicated read pointer that is used
for event reading in stream operations. From a functional
point of view the SP pointer is independent of the RP.

However, like the RP pointer, the direction into which the
SP pointer will mode, depend on configuration of the DIR
bit of the Event Buffer Control register: When the DIR bit
is configured as 0, the SP pointer will mode from oldest
event toward newer event. In the situation where the DIR
bit is set to 1, the SP pointer moves from newer events
towards older ones.

The value of SP is initialized at the moment the STREAM
command (EDRCMD[3:0] = 0011 is initiated.

The SP pointer is used to automatically load the next event
data into the Event data read back registers (addresses
0x2C to 0x33) after the last register (0x33) of the previous
event content is read and the STREAM Event data
recorder command is maintained.

As other pointers, the SP pointer address is not accessible
to the user.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 14 of 53

Retrieving the Number of Unread Events
The FM6124 features a 16-bit register that indicate the
number of unread event present in the Event Buffer
memory. This 16-bit number actually corresponds to the
number of events between WP and RP pointers. It is
accessible through I2C registers addresses 0x2A and 0x2B.

Before accessing the Unread Event counter, the host
processor must latch a internal registers content into the
16-bit register.

This is performed by writing 0x02 into the Pin/Event
Snapshot register.

Event buffer initial condition

Every time the FM6124 Event Buffer memory size
configuration is changed, by Event Buffer Memory will be
reinitialized the events records that may still be present
into the F-RAM will be erased. This re-initialization
process takes ~100µs and during that time no events will
be recorded and I2C communication should be stopped.
After initialization, the RP, WP, and FP pointers will all be
pointing at the base memory address as shown in the
diagram below.

W
P

 h
as

 o
nl

y
on

e
di

re
ct

io
n

FIGURE 15. INITIAL CONDITION OF EVENT BUFFER

The following example demonstrates the state of the
pointers after 3 events have been captured and stored in F-
RAM based Event buffer; the pointers will be positioned
as shown in the figure below:

FIGURE 16. INTERNAL POINTERS AFTER 3 EVENTS

The FP, WP, and RP pointers will be set as follow:

• WP will point to the next free position
• RP point to the next Event to be read
• FP is fix

Each time a new Event is recorded the WP address is
incremented. When WP increments beyond the Nmax
position, it will roll-over to FP and so on. If FP reached
WP, an error condition will occur.

As mentioned earlier, after a number of events have been
recorded and a number of events have been read, the RP
pointer will be away from FP and the WP pointer. In that
situation the Event data recorder makes possible to retrieve
either newer or older events by configuring the DIR bit
accordingly. The following diagram illustrates the impact
on the DIR register on the RP operation.

R
P

 d
ire

ct
io

n
de

pe
nd

s
on

 D
IR

 b
it

FIGURE 17. RP POINTER DIRECTION

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 15 of 53

EDR COMMAND SET
The FM6124 responds to commands written to address
0x20, through the I2C serial port. There are nine unique
commands, eight of which are used to retrieve event data,
the remaining one is used to set the partition between User
Memory and Event Memory. The commands and their
effect are listed below.

Command EDRCMD[0:3] DIR EFFECT
0 set direction dirrection to increment
1 set pointer dirrection to decrement

0

IF RP ≠ WP THEN
 read_buffer = event_buffer[RP]
 increment RP
ELSE
 read_buffer = [FF,FF,FF,FF,FF,FF,FF,FF]
 ERR = 0x01

1

IF RP ≠ FP THEN
 read_buffer = event_buffer[RP]
 decrement RP
ELSE
 read_buffer = [FF,FF,FF,FF,FF,FF,FF,FF]
 ERR = 0x01

GET KEEP 0010 x read_buffer = event_buffer[RP]

0

IF RP ≠ WP THEN
 read_buffer = event_buffer[SP]
 increment RP
ELSE
 read_buffer = [FF,FF,FF,FF,FF,FF,FF,FF]
 ERR = 1
ENDIF
SP = RP

1

IF RP ≠ FP THEN
 read_buffer = event_buffer[SP]
 decrement RP
ELSE
 read_buffer = [FF,FF,FF,FF,FF,FF,FF,FF]
 ERR = 1
ENDIF
SP = RP

0

IF SP ≠ WP THEN
 read_buffer = event_buffer[SP]
 increment SP
ELSE
 read_buffer = [FF,FF,FF,FF,FF,FF,FF,FF]
 ERR = 0x01

1

IF SP ≠ FP THEN
 read_buffer = event_buffer[SP]
 decrement SP
ELSE
 read_buffer = [FF,FF,FF,FF,FF,FF,FF,FF]
 ERR = 0x01

0 IF (WP - RP) > 1 THEN
 increment RP

1 IF RP > FP THEN
 decrement RP

FIRST 0110 x RP = FP
LAST 0111 x RP = WP - 1

SET EVENT
BUFFER SIZE 1000 x

IF COMMAND[7:6] ≠ EBUFSIZE[1:0] THEN
 SP = RP = FP = WP = 0x00
 event_buffer = [00,00,00,�,00,00,00]

RESERVED
1001

to
1111

x No Action

Table of Commands

STREAMING
GET 0011

SET DIR 0000

GET 0001

STREAMING
GET KEEP 0100

SKIP 0101

Each command is an eight bit assemblage of lesser
registers EBUFSIZE[1:0], ERR, DIR & EDRCMD[3:0]
The sequence of concatenation is shown in the table
below.

7 6 5 4 3 2 1 0
ERR DIR

Bit

EBUFSIZE[1:0] EDRCMD[3:0]

COMMAND STRUCTURE: Address 0x20

The EDRCMD[3:0] register specifies which of the nine
unique commands should be executed.

The DIR register specifies whether the event pointer used
by the command, should be incremented or decremented
after the successful completion of the command.

The ERR register is used to signal the host, that the event
pointer used during the last command can move no further
in the direction specified by DIR.

The EBUFSIZE[1:0] register specifies the partitioning of
User memory and Event Memory as indicated in the table
below.

EBUFSIZE[1:0] Event Memory User Memory
00 4000 events 0kB
01 3000 events 8kB
10 2000 events 16kB
11 1000 events 24kB

PARTITION SIZE:

ISSUING A COMMAND
When the host is ready to issue a command, the following
procedure should be used.

Start I2C
Send the EDR ID & [R/W] = 0 or write
Send the command register start address "0x20"
Send the EBUFSIZE[1:0]& ERR & DIR & EDRCMD[3:0]
Stop I2C

RETRIEVING SINGLE EVENTS
After a GET or KEEP command has been issued, the EDR
will place the event pointed to by RP into the read buffer.
The eight byte wide read buffer can be read through the
I2C serial port, starting at address 0x2C and finishing at
address 0x33. To retrieve an event from the buffer, the
following procedure should be followed.

Start I2C
Send the EDR ID & R/W bit = 0 (write)
Send the event buffer start address "0x2C"
Stop I2C

Start I2C
Send the EDR ID & R/W = 1 (read)
Send seven addition read requests
Stop I2C

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 16 of 53

Single Event Read

Send I2C EDR ID
+ R/W = 0 (write)

I2C Start

Send Reg Address = 0x20

I2C Stop

I2C Start

Send I2C EDR ID
+ R/W = 0 (write)

Send Command: GET or
GETKEEP + set DIR

Send Reg Address = 0x2C

I2C Stop

I2C Start

Send I2C EDR ID
+ R/W = 1 (read)

All 8 Bytes of event
data Read?

Event Data byte Read

I2C Stop

Step 1

Step 2

Step 3

End

FIGURE 18. SINGLE EVENT DATA RETRIEVAL PROCESS

Since the EDR's address register is auto-incrementing, it is
unnecessary to send the register address for each byte to be
read from the buffer. It is also unnecessary to begin
reading at address 0x2C or to finish reading at address
0x33. The user is free to retrieve event data from the read
buffer as best suits their application.

If the single event read command issued was a GET, then
RP will be incremented or decremented as indicated by
DIR.

If the single event command issued was a GET KEEP,
then RP will remain unchanged.

RETRIEVING MULTIPLE EVENTS
After a STREAMING GET or STREAMING GET KEEP
command has been issued, the EDR will place the event
pointed to by the SP pointer, into the read buffer. The
eight byte wide read buffer can be read through the I2C
serial port, starting at address 0x2C and finishing at
address 0x33. To retrieve an event from the buffer, the
following procedure should be followed.

Start I2C
Send the EDR ID & [R/W] = 0 or write
Send the event buffer start address "0x2C"
Stop I2C

Start I2C
Send the EDR ID & [R/W] = 1 or read
Send seven addition read requests
Stop I2C

Repeat until the desired number of events has been retrieved.

Multiple Events Read

Send I2C EDR ID
+ R/W = 0 (write)

I2C Start

Send Reg Address = 0x20

I2C Stop

I2C Start

Send I2C EDR ID
+ R/W = 0 (write)

Send Command: STREAM
+ set DIR

Send Reg Address = 0x2C

I2C Stop

I2C Start

Send I2C EDR ID
+ R/W = 1 (read)

Event Data Register
0x33 Read?

Event Data byte Read

I2C Stop

Step 1

Step 2

Step 3

Keep Reading Event?

No

Yes

Reload Event Data Registers
with Next/Previous Event data

(This operation is automatically
performed by the FM6124)

End

FIGURE 19. MULTIPLE EVENTS RETRIEVAL

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 17 of 53

Since the EDR's I2C address register is auto-incrementing,
it is unnecessary to send the subsequent address for each
byte read from the buffer. It is also unnecessary to begin
reading at address 0x2C. In order for the EDR to
automatically place the next event pointed to by SP into
the read buffer, you must read address 0x33. With this
single exception, the user is free to retrieve event data from
the read buffer as best suits their application.

If the multiple event read command issued was a
STREAMING GET, then RP will be incremented or
decremented as indicated by DIR.

If the multiple event read command issued was a
STREAMING GET KEEP, then RP will remain
unchanged.

Event Skipping Command
The SKIP Command (0101) can be used to increment RP
(DIR = 0) or decrement RP (DIR = 1). Note that RP will
always stay at least one Event before WP and that it will
never be decremented “below” FP.

FIRST and LAST Commands
With the FIRST command, the user can move RP to the
oldest Event immediately (RP = FP)
With the LAST command, the user can move RP to the
newest Event immediately (RP = WP -1)

SET EVENT BUFFER SIZE Command

The SET EVENT BUFFER SIZE command will write the
current value of EBUFSIZE[1:0] to the control register.
The EBUFSIZE[1:0] register is only written to the control
register during a SET EVENT BUFFER SIZE command
and ignored at all other times.

When a SET EVENT BUFFER SIZE command is issued
with a new EBUFSIZE[1:0] value, the event data memory
is reinitialized and the event records stored there are lost.
Reinitialization will only occur if the current value of
EBUFSIZE[1:0] is different than the value stored in the
control register.

Reinitialization takes approximately 100µs to complete
and during this period no event records can be generated
and I2C communication should be suspended. Before
issuing a SET EVENT BUFFER SIZE command, it is
recommended to first disable event recording by clearing
the pin event registers A & B, at addresses 0x25 & 0x26
respectively.

The following procedure should be used.

SET BUFSIZE Command

Send I2C EDR ID
+ R/W = 0 (write)

I2C Start

Send Reg Address = 0x25

I2C Stop

I2C Start

Send I2C EDR ID
+ R/W = 0 (write)

Sent 0x00 to Clear Pin
Event Enable A register

Send Reg Address = 0x20
EDR Control Register

I2C Stop

Step 1

Step 2

Sent 0x00 to Clear Pin
Event Enable B register

Sent EBUFSIZE[1:0], 0,
READDIR, EDRCMD[3:0]

Wait 100us

End

Step 3

FIGURE 20. SET BUFFER SIZE COMMAND

In situations where the buffer size is unchanged but its
content and pointers needs to be reinitialized, the host
system should perform the following operations:

1. Clear the Pin Event Enable registers (Step 1 of
previous diagram)

2. Send the SET EVENT BUFFER SIZE command
with a different EBUFSIZE[1:0] than the current
one (Step 2 of previous diagram)

3. Wait 100µS for the initialization process to
complete (Step 3 of previous diagram)

4. Send the SET EVENT BUFFER SIZE command
with the desired EBUFSIZE[1:0] value (Step 2 of
previous diagram, repeat)

5. Wait 100µS for the initialization process to
complete (Step 3 of previous diagram, repeat)

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 18 of 53

RSTB and RESET input pins
The FM6124 features an active-low RESET input pin.
Applying a manual reset or a power-up Reset of the
FM6124 will clear the volatile registers. However this will
have no impact on the Event buffer content, their
associated pointers, or the MCU companion registers.

The RESET pin features an internal pull-up resistor so if
the reset pin in not used, it can be left unconnected.

Event Deletion
Events are not actually deleted until the circular buffer is
overwritten with new data. Pointers are moved to
effectively prevent access to automatically discarded data.
A pointer move is the last thing done when an event is
popped off of the buffer.

Safety provisions
To prevent data loss or corruption while Events are being
read with the KEEP bit set to 0, Event Read Pointer is only
moved at the following times:

• After all of the data of an event has been stored
• After the 8th data byte is transmitted when

steaming Events
• As soon as 1 byte is written over the oldest Event,

when recording an Event in a full buffer condition

The recording of the event data in the F-RAM Event buffer
memory require ~100µS per event. In the case of
simultaneous events occurring on all 12 input of the
FM6124, a total of 12 x 100µS = 1.2ms will be required
for the recording of all event Data. During that period of
time, event can still be registered, but the Event content
will be held into volatile registers.

If the supply voltage is lost before the completion of all
events data transfer into F-RAM memory, the events that
are still in volatile register will be lost. The device will
resume normal operation when the supply comes back.

Pin Snapshot
It is possible to see the state of any pin at any time. Write 1
to the SNAP bit to capture the state of all pins. This bit
will be automatically cleared (Write-Only).

Error Conditions
In situations where an error condition can occur, data sent
back will be 0xFF. This includes reading illegal addresses
and requesting more events and the buffer currently holds.
The ERR bit will be set to 1 and Event registers will be set
to 0xFF until Control Buffer is written.

Output Interrupt: INT pin

The INT pin is an active low output that will react on:

• Any event occurring on any input pin for which
the corresponding bit of the “Gen. INT pulse on
Pin Event” Registers have been set to 1.

• Full Buffer condition.

The setting of the “Gen. INT pulse on Pin Event” registers
and resulting activity on INT pin is independent of
corresponding event recording activation.

MCU Companion
The FM6124 includes a real-time clock (RTC) with alarm
and a processor companion along with the EDR serial
nonvolatile F-RAM. The companion is a highly integrated
peripheral including a low-VDD reset, a programmable
watchdog timer, a 16-bit nonvolatile event counter, a
comparator for early power-fail detection or other
purposes, and a 64-bit serial number.

The real-time clock and supervisor functions are accessed
under their own commands. The RTC/alarm and some
control registers are maintained by the power source on the
VBAK pin, allowing them to operate from battery or
backup capacitor power when VDD drops below a set
threshold.

Processor Supervisor
Supervisors provide a host processor two basic functions:
Detection of power supply fault conditions and a watchdog
timer to escape a software lockup condition. The FM6124
device has a reset pin (RSTB) to drive a processor reset
input during power faults, power-up, and software lockups.
It is an open drain output with a weak internal pull-up to
VDD. This allows other reset sources to be wire-OR’d to
the RSTB pin. When VDD is above the programmed trip
point, RSTB output is pulled weakly to VDD. If VDD drops
below the reset trip point voltage level (VTP), the RSTB
pin will be driven low. It will remain low until VDD falls
too low for circuit operation which is the VRST level. When
VDD rises again above VTP, RSTB continues to drive low
for at least 50 ms (tRPU) to ensure a robust system reset at a
reliable VDD level. After tRPU has been met, the RSTB pin
will return to the weak high state. While RSTB is asserted,
serial bus activity is locked out even if a transaction

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 19 of 53

occurred as VDD dropped below VTP. A memory operation
started while VDD is above VTP will be completed
internally.

Table 2 below shows how bits VTP(1:0) control the trip
point of the low-VDD reset. They are located in register
18h, bits 0 and 1. The reset pin will drive low when VDD is
below the selected VTP voltage. Figure 20 illustrates the
reset operation in response to a low VDD.

 Table 2.

VTP Setting VTP1 VTP0
2.6V 0 0

2.75V 0 1
2.9V 1 0
3.0V 1 1

VDD

VTP
tRPU

RST

FIGURE 20. LOW VDD RESET

A watchdog timer can also be used to drive an active reset
signal. The watchdog is a free-running programmable
timer. The timeout period can be software programmed
from 60 ms to 1.8 seconds in 60 ms increments via a 5-bit
nonvolatile setting (register 0Ch).

FIGURE 21. WATCHDOG TIMER

The watchdog also incorporates a window timer feature
that allows a delayed start. The starting time and ending
time defines the window and each may be set
independently. The starting time has 25 ms resolution and
0 ms to 775 ms range.

FIGURE 22. WINDOW TIMER

The watchdog EndTime value is located in register 0Ch,
bits 4-0, the watchdog enable is bit 7. The watchdog is
restarted by writing the pattern 1010b to the lower nibble
of register 0Ah. Writing the correct pattern will also cause
the timer to load new timeout values. Writing other
patterns to this address will not affect its operation. Note
the watchdog timer is free-running. Prior to enabling it,
users should restart the timer as described above. This
assures that the full timeout is provided immediately after
enabling. The watchdog is disabled when VDD drops below
VTP. Note setting the EndTime timeout setting to all
zeroes (00000b) disables the timer to save power. The
listing below summarizes the watchdog bits.

Watchdog StartTime WDST4-0 0Bh, bits 4-0
Watchdog EndTime WDET4-0 0Ch, bits 4-0
Watchdog Enable WDE 0Ch, bit 7
Watchdog Restart WR3-0 0Ah, bits 3-0
Watchdog Flags EWDF, 09h, bit 7
 LWDF 09h, bit 6

The programmed StartTime value is a guaranteed
maximum time while the EndTime value is a guaranteed
minimum time, and both vary with temperature and VDD
voltage. The watchdog has two additional controls
associated with its operation. The nonvolatile enable bit
WDE allows the RSTB to go active if the watchdog
reaches the timeout without being restarted. If a reset
occurs, the timer will restart on the rising edge of the reset
pulse. If WDE is not enabled, the watchdog timer still runs
but has no effect on RSTB. The second control is a nibble
that restarts the timer, thus preventing a reset. The timer
should be restarted after changing the timeout value.

This procedure must be followed to properly load the
watchdog registers:
 Address

1. Write the StartTime value 0Bh
2. Write the EndTime value and WDE=1 0Ch
3. Issue a Restart command 0Ah

The restart command in step 3 must be issued before tDOG2,
which was programmed in step 2. The window timer starts
counting when the restart command is issued.

RST

Watchdog
Restart

Start
Time

End
Time

 100 ms (max)

 Window

Timebase Down Counter

Watchdog
Timer Settings

100 ms
clock

WDE

RSTB

WR3-0 = 1010b
 to restart

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 20 of 53

Manual Reset
The RSTB is a bi-directional signal allowing the FM6124
to filter and de-bounce a manual reset switch. The RSTB
input detects an external low condition and responds by
driving the RSTB signal low for 100 ms (max.). This
effectively filters and de-bounces a reset switch. After this
timeout (tRPW), the user may continue pulling down on the
RSTB pin, but I2C commands will not be locked out.

FIGURE 23. MANUAL RESET

Note the internal weak pull-up eliminates the need for
additional external components.

Reset Flags
In case of a reset condition, a flag bit will be set to indicate
the source of the reset. A low-VDD reset is indicated by the
POR bit, register 09h bit 5. There are two watchdog reset
flags - one for an early fault (EWDF) and the other for a
late fault (LWDF), located in register 09h bits 7 and 6. A
manual reset will result in no flag being set, so the absence
of a flag is a manual reset. Note that the bits are set in
response to reset sources but they must be cleared by the
user. It is possible to read the register and have both
sources indicated if both have occurred since the user
cleared them.

Power Fail Comparator
An analog comparator compares the PFI input pin to an
onboard 1.5V reference. When the PFI input voltage drops
below this threshold, the comparator will drive the PFO
pin to a low state. The comparator has 100 mV of
hysteresis (rising voltage only) to reduce noise sensitivity.
The most common application of this comparator is to
create an early warning power fail interrupt (NMI). This
can be accomplished by connecting the PFI pin to an
upstream power supply via a resistor divider. An
application circuit is shown below. The comparator is a
general purpose device and its application is not limited to
the NMI function.

FIGURE 23. COMPARATOR AS POWER FAIL WARNING

If the power-fail comparator is not used, the PFI pin should
be tied to either VDD or VSS. Note that the PFO output will
drive to VDD or VSS as well.

Event Counter
The FM6124 offers the user a nonvolatile 16-bit event
counter. The input pin CNT has a programmable edge
detector. The CNT pin clocks the counter. The counter is
located in registers 0E-0Fh. When the programmed edge
polarity occurs, the counter will increment its count value.
The register value is read by setting the RC bit (register
0Dh, bit 3) to 1. This takes a snapshot of the counter byte
allowing a stable value even if a count occurs during the
read. The register value can be written by first setting the
WC bit (register 0Dh, bit 2) to 1. The user then may clear
or preset the counter by writing to registers 0E-0Fh.
Counts are blocked when the WC bit is set, so the user
must clear the bit to allow counts.

The counter polarity control bit is CP, register 0Dh bit 0.
When CP is 0, the counter increments on a falling edge of
CNT, and when CP is set to 1, the counter increments on a
rising edge of CNT. The polarity bit CP is nonvolatile.

FIGURE 24. EVENT COUNTER

The counter does not wrap back to zero when it reaches the
limit of 65,535 (FFFFh). Care must be taken prior to the
rollover, and a subsequent counter reset operation must
occur to continue counting.

There is also a control bit that allows the user to define the
counter as nonvolatile or battery-backed. The counter is
nonvolatile when the NVC bit (register 0Dh, bit 7) is logic
1 and battery-backed when the NVC bit is logic 0. Setting

+

- 1.5V ref

Regulator
VDD

FM6124

To MCU
NMI input

PFO

FM6124
Reset
Switch

RSTB MCU

Switch
Behavior

RSTB FM6124
drives

100 ms (max.)

16-bit Counter
CNT

CP

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 21 of 53

the counter mode to battery-backed allows counter
operation under VBAK (as well as VDD) power. The lowest
operating voltage for battery-backed mode is 2.0V. When
set to “nonvolatile” mode, the counter operates only when
VDD is applied and is above the VTP voltage.

The event counter may be programmed to detect a tamper
event, such as the system’s case or access door being
opened. A normally closed switch is tied to the CNT pin
and the other contact to the case chassis, usually ground.
The typical solution uses a pull-up resistor on the CNT pin
and will continuously draw battery current. The FM6124
chip allows the user to invoke a polled mode, which
occasionally samples the pin in order to minimize battery
drain. It internally tries to pull the CNT pin up and if open
circuit will be pulled up to a VIH level, which will trip the
edge detector and increment the event counter value.
Setting the POLL bit (register 0Dh, bit 1) places the CNT
pin into this mode. This mode allows the event counter to
detect a rising edge tamper event but the user is restricted
to operating in battery-backed mode (NVC=0) and using
rising edge detection (CP=1). The CNT pin is polled once
every 125ms. The additional average IBAK current is less
than 5nA. The polling timer circuit operates from the
RTC, so the oscillator must be enabled for this to function
properly.

FIGURE 25. POLLED MODE ON CNT PIN DETECT TAMPER

In the polled mode, the internal pullup circuit can source a
limited amount of current. The maximum capacitance
(switch open circuit) allowed on the CNT pin is 100pF.

Serial Number
A memory location to write a 64-bit serial number is
provided. It is a writeable nonvolatile memory block that
can be locked by the user once the serial number is set.
The 8 bytes of data and the lock bit are all accessed via
unique commands for the RTC and Processor Companion
registers. Therefore the serial number area is separate and
distinct from the memory array. The serial number
registers can be written an unlimited number of times, so
these locations are general purpose memory. However
once the lock bit is set, the values cannot be altered and
the lock cannot be removed. Once locked the serial number
registers can still be read by the system.

The serial number is located in registers 10h to 17h. The
lock bit is SNL, register 18h bit 7. Setting the SNL bit to a
1 disables writes to the serial number registers, and the
SNL bit cannot be cleared.

Alarm
The alarm function compares user-programmed values to
the corresponding time/date values and operates under VDD
or VBAK power. When a match occurs, an alarm event
occurs. The alarm drives an internal flag AF (register 00h,
bit 6) and may drive the ACS pin, if desired, by setting the
AL/SW bit (register 18h, bit 6) in the Companion Control
register. The alarm condition is cleared by writing a ‘0’ to
the AF bit.

There are five alarm match fields. They are Month, Date,
Hours, Minutes, and Seconds. Each of these fields also has
a Match bit that is used to determine if the field is used in
the alarm match logic. Setting the Match bit to ‘0’
indicates that the corresponding field will be used in the
match process.

Depending on the Match bits, the alarm can occur as
specifically as one particular second on one day of the
month, or as frequently as once per second continuously.
The MSB of each Alarm register is a Match bit. Examples
of the Match bit settings are shown in Table 4. Selecting
none of the match bits (all ‘1’s) indicates that no match is
required. The alarm occurs every second. Setting the
match select bit for seconds to ‘0’ causes the logic to
match the seconds alarm value to the current time of day.
Since a match will occur for only one value per minute, the
alarm occurs once per minute. Likewise setting the
seconds and minutes match select bits causes an exact
match of these values. Thus, an alarm will occur once per
hour. Setting seconds, minutes, and hours causes a match
once per day. Lastly, selecting all match-values causes an
exact time and date match. Selecting other bit
combinations will not produce meaningful results,
however the alarm circuit will follow the functions
described.

There are two ways a user can detect an alarm event, by
reading the AF flag or monitoring the ACS pin. The
interrupt pin on the host processor may be used to detect
an alarm event. The AF flag in register 00h (bit 6) will
indicate that a time/date match has occurred. The AF flag
will be set to ‘1’ when a match occurs. The AEN bit must
be set to enable the AF flag on alarm matches. The flag
and ACS pin will remain in this state until the AF bit is
cleared by writing it to a ‘0’. Clearing the AEN bit will
prevent further matches from setting AF but will not
automatically clear the AF flag.

The RTC alarm is integrated into the special function
registers and shares its output pin with the 512Hz

CNT

FM6124

125ms

< 100pF
Vbak

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 22 of 53

calibration and square wave outputs. When the RTC
calibration mode is invoked by setting the CAL bit
(register 00h, bit 2), the ACS output pin will be driven
with a 512 Hz square wave and the alarm will continue to
operate. Since most users only invoke the calibration mode
during production this should have no impact on the
otherwise normal operation of the alarm.

The ACS output may also be used to drive the system with
a frequency other than 512 Hz. The AL/SW bit (register
18h, bit 6) must be ‘0’. A user-selectable frequency is
provided by F0 and F1 (register 18h, bits 4 and 5). The
other frequencies are 1, 4096, and 32768 Hz. If a

continuous frequency output is enabled with CAL mode,
the alarm function will not be available.

Following is a summary table that shows the relationship
between register control settings and the state of the ACS
pin.

 Table 3.

State of Register Bit
CAL AEN AL/SW

Function of
ACS pin

0 1 1 /Alarm
0 X 0 Sq Wave out
1 X X 512 Hz out
0 0 1 Hi-Z

Table 4. Alarm Match Bit Examples

Seconds Minutes Hours Date Months Alarm condition
1 1 1 1 1 No match required = alarm 1/second
0 1 1 1 1 Alarm when seconds match = alarm 1/minute
0 0 1 1 1 Alarm when seconds, minutes match = alarm 1/hour
0 0 0 1 1 Alarm when seconds, minutes, hours match = alarm 1/date
0 0 0 0 1 Alarm when seconds, minutes, hours, date match = alarm 1/month

Real-time Clock Operation
The real-time clock (RTC) is a timekeeping device
that can be capacitor- or battery-backed for
permanently-powered operation. It offers a software
calibration feature that allows high accuracy.

The RTC consists of an oscillator, clock divider, and
a register system for user access. It divides down the
32.768 kHz time-base and provides a minimum
resolution of seconds (1Hz). Static registers provide
the user with read/write access to the time values. It
includes registers for seconds, minutes, hours, day-
of-the-week, date, months, and years. A block
diagram shown in Figure 9 illustrates the RTC
function.

The user registers are synchronized with the
timekeeper core using R and W bits in register 00h.
The R bit is used to read the time. Changing the R bit
from 0 to 1 transfers timekeeping information from
the core into the user registers 02-08h that can be

read by the user. If a timekeeper update is pending
when R is set, then the core will be updated prior to
loading the user registers. The user registers are
frozen and will not be updated again until the R bit is
cleared to a ‘0’.

The W bit is used to write new time/date values.
Setting the W bit to a ‘1’ stops the RTC and allows
the timekeeping core to be written with new data.
Clearing it to ‘0’ causes the RTC to start running
based on the new values loaded in the timekeeper
core. The RTC may be synchronized to another clock
source. On the 8th clock of the write to register 00h
(W=0), the RTC starts counting with a timebase that
has been reset to zero milliseconds.

Note: Users should be certain not to load invalid
values, such as FFh, to the timekeeping registers.
Updates to the timekeeping core occur continuously
except when locked.

 FM6124 Event Data Recorder

Rev. 1.1
Dec. 2007 Page 23 of 28

FIGURE 26. REAL TIME CLOCK CORE BLOCK DIAGRAM

Backup Power
The real-time clock and alarm are intended to be
permanently powered. When the primary system
power fails, the voltage on the VDD pin will drop.
When the VDD voltage is less than VSW, the RTC
(and event counter) will switch to the backup power
supply on VBAK. The clock operates at extremely
low current in order to maximize battery or capacitor
life. However, an advantage of combining a clock
function with F-RAM memory is that data is not lost
regardless of the backup power source.

Trickle Charger
To facilitate capacitor backup, the VBAK pin can
optionally provide a trickle charge current. When the
VBC bit (register 18h bit 3) is set to a ‘1’, the VBAK
pin will source approximately 80 µA until VBAK
reaches VDD. This charges the capacitor to VDD
without an external diode and resistor charger.
There is a Fast Charge mode which is enabled by the
FC bit (register 18h, bit 2). In this mode the trickle
charger current is set to approximately 1 mA,
allowing a large backup capacitor to charge more
quickly.

• In the case where no battery is used, the VBAK
pin should be tied to VSS and VBC bit cleared.

!!!! Note: systems using lithium batteries should clear
the VBC bit to 0 to prevent battery charging. The
VBAK circuitry includes an internal 1 KΩ series
resistor as a safety element.

Calibration
When the CAL bit in register 00h is set to a ‘1’, the
clock enters calibration mode. The FM6124 devices
employ a digital method for calibrating the crystal
oscillator frequency. The digital calibration scheme
applies a digital correction to the RTC counters based
on the calibration settings, CALS and CAL.4-0. In
calibration mode (CAL=1), the ACS pin is driven
with a 512 Hz (nominal) square wave and the alarm
is temporarily unavailable. Any measured deviation
from 512 Hz translates into a timekeeping error. The
user measures the frequency and writes the
appropriate correction value to the calibration
register. The correction codes are listed in the table
below. For convenience, the table also shows the
frequency error in ppm. Positive ppm errors require a
negative adjustment that removes pulses. Negative
ppm errors require a positive correction that adds
pulses. Positive ppm adjustments have the CALS
(sign) bit set to 1, where as negative ppm adjustments
have CALS = 0. After calibration, the clock will have
a maximum error of ± 2.17 ppm or ± 0.09 minutes
per month at the calibrated temperature.

The user will not be able to see the effect of the
calibration setting on the 512 Hz output. The
addition or subtraction of digital pulses occurs after
the 512 Hz output.

The calibration setting is stored in F-RAM so it is not
lost should the backup source fail. It is accessed with
bits CAL.4-0 in register 01h. This value only can be
written when the CAL bit is set to a 1. To exit the
calibration mode, the user must clear the CAL bit to a

32.768 kHz
crystal

Oscillator Clock
Divider

Update
Logic

 512 Hz or
SW out W

R

Seconds
7 bits

Minutes
7 bits

Hours
6 bits

Date
6 bits

Months
5 bits

Years
8 bits CF

Days
3 bits

User Registers

1 Hz

/OSCEN

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 24 of 53

logic 0. When the CAL bit is 0, the ACS pin will
revert to the function according to Table 3.

Crystal Type
The crystal oscillator is designed to use a 12.5pF
crystal without the need for external components,
such as loading capacitors. The FM6124 device has
built-in loading capacitors that match the crystal.

If a 32.768kHz crystal is not used, an external
oscillator may be connected to the FM6124. Apply
the oscillator to the X1 pin. Its high and low voltage
levels can be driven rail-to-rail or amplitudes as low
as approximately 500mV p-p. To ensure proper
operation, a DC bias must be applied to the X2 pin.
It should be centered between the high and low levels
on the X1 pin. This can be accomplished with a
voltage divider.

1

2

3
4

5

6

7

8

9

10

11

3435363738394041424344

FM6124-QG

2212 13 14 15 16 17 18 19 20 21
23

24

25

26

27

28

29

30

31

32

33VSS
ACS/ALM

CNT
INT

RESET
IN4
IN5
IN6
IN7

SCL
SDA

VS
S

RS
TB

PF
O

PF
I

VB
AK

VD
D

NCNCNCNCNC

X2
X1
IN0
IN1
IN2
IN3
NC
NC
VDD
NC
NC

VS
S

VD
D

IN
8

IN
9

IN
10

IN
11 A

0
A

1
NC NC NC

FIGURE 27. EXTERNAL OSCILLATOR

In the example, R1 and R2 are chosen such that the
X2 voltage is centered around the oscillator drive
levels. If you wish to avoid the DC current, you may
choose to drive X1 with an external clock and X2
with an inverted clock using a CMOS inverter.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 25 of 53

Layout Recommendations
The X1 and X2 crystal pins employ very high impedance circuits and the oscillator connected to these pins can be upset by
noise or extra loading. To reduce RTC clock errors from signal switching noise, a guard ring should be placed around these
pads and the guard ring grounded. High speed traces should be routed away from the X1/X2 pads. The X1 and X2 trace
lengths should be less than 5 mm. The use of a ground plane on the backside or inner board layer is preferred. See layout
example below.

FIGURE 27. PCB LAYOUT EXAMPLE

Table 5. Digital Calibration Adjustments

Positive Calibration for slow clocks: Calibration will achieve ± 2.17 PPM after calibration
 Measured Frequency Range Error Range (PPM)
 Min Max Min Max Program Calibration Register to:

0 512.0000 511.9989 0 2.17 000000
1 511.9989 511.9967 2.18 6.51 100001
2 511.9967 511.9944 6.52 10.85 100010
3 511.9944 511.9922 10.86 15.19 100011
4 511.9922 511.9900 15.20 19.53 100100
5 511.9900 511.9878 19.54 23.87 100101
6 511.9878 511.9856 23.88 28.21 100110
7 511.9856 511.9833 28.22 32.55 100111
8 511.9833 511.9811 32.56 36.89 101000
9 511.9811 511.9789 36.90 41.23 101001

10 511.9789 511.9767 41.24 45.57 101010
11 511.9767 511.9744 45.58 49.91 101011
12 511.9744 511.9722 49.92 54.25 101100
13 511.9722 511.9700 54.26 58.59 101101
14 511.9700 511.9678 58.60 62.93 101110
15 511.9678 511.9656 62.94 67.27 101111
16 511.9656 511.9633 67.28 71.61 110000
17 511.9633 511.9611 71.62 75.95 110001
18 511.9611 511.9589 75.96 80.29 110010
19 511.9589 511.9567 80.30 84.63 110011
20 511.9567 511.9544 84.64 88.97 110100
21 511.9544 511.9522 88.98 93.31 110101
22 511.9522 511.9500 93.32 97.65 110110
23 511.9500 511.9478 97.66 101.99 110111
24 511.9478 511.9456 102.00 106.33 111000
25 511.9456 511.9433 106.34 110.67 111001
26 511.9433 511.9411 110.68 115.01 111010
27 511.9411 511.9389 115.02 119.35 111011
28 511.9389 511.9367 119.36 123.69 111100
29 511.9367 511.9344 123.70 128.03 111101
30 511.9344 511.9322 128.04 132.37 111110
31 511.9322 511.9300 132.38 136.71 111111

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 26 of 53

Negative Calibration for fast clocks: Calibration will achieve ± 2.17 PPM after calibration

 Measured Frequency Range Error Range (PPM)
 Min Max Min Max Program Calibration Register to:

0 512.0000 512.0011 0 2.17 000000
1 512.0011 512.0033 2.18 6.51 000001
2 512.0033 512.0056 6.52 10.85 000010
3 512.0056 512.0078 10.86 15.19 000011
4 512.0078 512.0100 15.20 19.53 000100
5 512.0100 512.0122 19.54 23.87 000101
6 512.0122 512.0144 23.88 28.21 000110
7 512.0144 512.0167 28.22 32.55 000111
8 512.0167 512.0189 32.56 36.89 001000
9 512.0189 512.0211 36.90 41.23 001001

10 512.0211 512.0233 41.24 45.57 001010
11 512.0233 512.0256 45.58 49.91 001011
12 512.0256 512.0278 49.92 54.25 001100
13 512.0278 512.0300 54.26 58.59 001101
14 512.0300 512.0322 58.60 62.93 001110
15 512.0322 512.0344 62.94 67.27 001111
16 512.0344 512.0367 67.28 71.61 010000
17 512.0367 512.0389 71.62 75.95 010001
18 512.0389 512.0411 75.96 80.29 010010
19 512.0411 512.0433 80.30 84.63 010011
20 512.0433 512.0456 84.64 88.97 010100
21 512.0456 512.0478 88.98 93.31 010101
22 512.0478 512.0500 93.32 97.65 010110
23 512.0500 512.0522 97.66 101.99 010111
24 512.0522 512.0544 102.00 106.33 011000
25 512.0544 512.0567 106.34 110.67 011001
26 512.0567 512.0589 110.68 115.01 011010
27 512.0589 512.0611 115.02 119.35 011011
28 512.0611 512.0633 119.36 123.69 011100
29 512.0633 512.0656 123.70 128.03 011101
30 512.0656 512.0678 128.04 132.37 011110
31 512.0678 512.0700 132.38 136.71 011111

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 27 of 53

Detailed Register Description

The following table contains the description of the Event Data Recorder and MCU Companion I2C registers.

Address Description
Event Data BCD Year 0x33

10s of Year Year
 Contains the Event data Year in BCD format:

 Upper Quartet contains 10s of Years
 Lower Quartet contains unit of Years
Event Data BCD Month

D7 D6 D5 D4 D3 D2 D1 D0
0x32

10s of Month Month
 Contains the Event data Month in BCD format:

 Upper Quartet contains 10s of Month
 Lower Quartet contains unit of Month
Event Data BCD Date

D7 D6 D5 D4 D3 D2 D1 D0
0x31

10s of Date Date
 Contains the Event data Date in BCD format:

 Upper quartet contains 10s of Date
 Lower Quartet contains unit of Date
Event Data of Week

D7 D6 D5 D4 D3 D2 D1 D0
0x30

 Contains Event Data Day of week

Event Data BCD Hours
D7 D6 D5 D4 D3 D2 D1 D0

0x2F

10s of Hours Hours
 Contains the Event data hours in BCD format:

 Upper quarters contains 10s of Hours
 Lower Quartet contains unit of Hours
Event Data BCD Minutes

D7 D6 D5 D4 D3 D2 D1 D0
0x2E

10s of Minutes Minutes
 Contains the Event data Minutes in BCD format:

 Upper quarters contains 10s of Minutes
 Lower Quartet contains unit of Minutes
Event Data BCD Seconds

D7 D6 D5 D4 D3 D2 D1 D0
0x2D

10s of Seconds Seconds
 Contains the Event data seconds in BCD format:

 Upper quarters contain 10s of seconds
 Lower Quartet contains unit of seconds

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 28 of 53

Event Data Code

D7 D6 D5 D4 D3 D2 D1 D0
0x2C

Event Code[7:0]
Event Code
[7:0]

An Event code is associated with Each recorded event.
The table below shows the association between the Events and their corresponding Event Code.

Event Event Code Event Event Code
EV_PIN0_FALL 0x08 EV_PIN6_FALL 0x14
EV_PIN0_RISE 0x09 EV_PIN6_RISE 0x15
EV_PIN1_FALL 0x0A EV_PIN7_FALL 0x16
EV_PIN1_RISE 0x0B EV_PIN7_RISE 0x17
EV_PIN2_FALL 0x0C EV_PIN8_FALL 0x18
EV_PIN2_RISE 0x0D EV_PIN8_RISE 0x19
EV_PIN3_FALL 0x0E EV_PIN9_FALL 0x1A
EV_PIN3_RISE 0x0F EV_PIN9_RISE 0x1B
EV_PIN4_FALL 0x10 EV_PIN10_FALL 0x1C
EV_PIN4_RISE 0x11 EV_PIN10_RISE 0x1D
EV_PIN5_FALL 0x12 EV_PIN11_FALL 0x1E
EV_PIN5_RISE 0x13 EV_PIN11_RISE 0x1F

Unread Events Counter MSB
D7 D6 D5 D4 D3 D2 D1 D0

0x2B

Number of Unread Event Counter[15:8]
Unread Events Counter LSB

D7 D6 D5 D4 D3 D2 D1 D0
0x2A

Number of Unread Event Counter[7:0]
Unread
Event
Counter
[15:0]

This 16-bit register contains the number of unread Event held in the FM6124 Event Buffer F-RAM memory.
This value corresponds to the distance between WP and RP pointers.
A snapshot of the internal Unread Event Counter must be performed before reading this register.
This is done by writing 0x02 into the register located at address 27h
Pin Pass-Through B

D7 D6 D5 D4 D3 D2 D1 D0
0x29

P11 P10 P9 P8 P7 P6 P5 P4
P11-P4 Read Only: This register contains the Input pin logic level at the moment the snapshot was performed

Pin Pass-Through A
D7 D6 D5 D4 D3 D2 D1 D0

0x28

Reserved P3 P2 P1 P0
P3-P0 Read Only: This register contains the Input pin logic level at the moment the snapshot was performed

Pin State – #Events Snapshot
D7 D6 D5 D4 D3 D2 D1 D0

0x27

Reserved NBEV SNAP
NBEV Write Only: Writing a 1 into the NBEVP will perform a snapshot read of the internal unread Events Counter

register and write the corresponding input logic level into the Register 2Ah and 2Bh
SNAP Write Only: Writing a 1 into the SNAP will perform a snapshot read of all 12 Input of the FM6124 and write the

corresponding input logic level into the Register 28h and 29h
Pin Event Enable B

D7 D6 D5 D4 D3 D2 D1 D0
0x26

P11 P10 P9 P8 P7 P6 P5 P4
P11-P4 Pin Event Enable

0: Event detection on the corresponding input pin is disabled
1: Event detection on the corresponding input pin is Activated
Pin Event Enable A

D7 D6 D5 D4 D3 D2 D1 D0
0x25

Reserved P3 P2 P1 P0
P3 – P0 Pin Event Enable

0: Event detection on the corresponding input pin is disabled
1: Event detection on the corresponding input pin is Activated

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 29 of 53

Pin Event Rise/Fall A

D7 D6 D5 D4 D3 D2 D1 D0
0x24

P11 P10 P9 P8 P7 P6 P5 P4
 Pin Event triggering condition

0: Pin will be triggered by a High to Low transition on the corresponding Input pin
1: Pin will be triggered by a Low to High transition on the corresponding Input pin
Pin Event Rise/Fall A

D7 D6 D5 D4 D3 D2 D1 D0
0x23

Reserved P3 P2 P1 P0
P3 – P0 Pin Event triggering condition

0: Pin will be triggered by a High to Low transition on the corresponding Input pin
1: Pin will be triggered by a Low to High transition on the corresponding Input pin
Pin Event Interrupt B

D7 D6 D5 D4 D3 D2 D1 D0
0x22

P11 P10 P9 P8 P7 P6 P5 P4
P11-P4 Pin Event Interrupt activate

0: the interrupt pin will not be activated when an Event will be detected on the corresponding input pin
1: The INT pin will be activated (Low) when a Event is detected on the corresponding Input pin
Pin Event interrupt A

D7 D6 D5 D4 D3 D2 D1 D0
0x21

CLEAR BF B75F B50F P3 P2 P1 P0
CLEAR Writing 1 to this Bit will deactivate the INT pin, when activated by a Pin Event interrupt
BF Buffer Full:

Writing 1 to this bit location will make the INT to become Active then the Buffer Full condition is met
B75F Buffer 75% Full:

Writing 1 to this bit location will make the INT to become Active then the Buffer gets 75% Full
B50F Buffer 50% Full:

Writing 1 to this bit location will make the INT to become Active then the Buffer gets 50% Full
P3 – P0 Pin Event Interrupt activate

0: the interrupt pin will not be activated when an Event will be detected on the corresponding input pin
1: The INT pin will be activated (Low) when a Event is detected on the corresponding Input pin
Event Recorder Control

D7 D6 D5 D4 D3 D2 D1 D0
0x20

EBUFSIZE[1:0] ERR READIR EDRCMD[3:0]
EBUFSIZE
[1:0]

Event Buffer and User F-RAM Sizes. Setting EBUFSIZE to a new value resets the Event Buffer.
Important: The user should disable Event Recording while resetting the Event Buffer. Setting the
EBUFSIZE bits to a different value will reset all the Event Buffer.

EBUFSIZE Max number of Events User F-RAM size
00 4000 0
01 3000 8 KBytes
10 2000 16 Kbytes
11 1000 24 KBytes

ERR Error bit (RO). User can read this bit to know if they have reach the end of the Event Buffer when
reading it. Writing ERR bit has no effect.

DIR Event Buffer Read Direction. When set to ‘1’, Read pointer (RP) will be decremented (instead of
incremented) when an event has been read out of the Event Buffer.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 30 of 53

Alarm – Month

D7 D6 D5 D4 D3 D2 D1 D0
0x1D

M 0 0 10 Month Month.3 Month.2 Month.1 Month.0
 Contains the alarm value for the month and the mask bit to select or deselect the Month value.
/M Match. Setting this bit to 0 causes the Month value to be used in the alarm match logic. Setting this bit to 1

causes the match circuit to ignore the Month value. Battery-backed, read/write.
0x1C Alarm – Date
 D7 D6 D5 D4 D3 D2 D1 D0
 M 0 10 date.1 10 date.0 Date.3 Date.2 Date.1 Date.0
 Contains the alarm value for the date and the mask bit to select or deselect the Date value.
/M Match: Setting this bit to 0 causes the Date value to be used in the alarm match logic. Setting this bit to 1 causes

the match circuit to ignore the Date value. Battery-backed, read/write.
0x1B Alarm – Hours
 D7 D6 D5 D4 D3 D2 D1 D0
 M 0 10 hours.1 10 hours.0 Hours.3 Hours2 Hours.1 Hours.0
 Contains the alarm value for the hours and the mask bit to select or deselect the Hours value.
/M Match: Setting this bit to 0 causes the Hours value to be used in the alarm match logic. Setting this bit to 1 causes

the match circuit to ignore the Hours value. Battery-backed, read/write.
0x1A Alarm – Minutes
 D7 D6 D5 D4 D3 D2 D1 D0
 M 10 min.2 10 min.1 10 min.0 Min.3 Min.2 Min.1 Min.0
 Contains the alarm value for the minutes and the mask bit to select or deselect the Minutes value
/M Match: Setting this bit to 0 causes the Minutes value to be used in the alarm match logic. Setting this bit to 1

causes the match circuit to ignore the Minutes value. Battery-backed, read/write.
0x19 Alarm – Seconds
 D7 D6 D5 D4 D3 D2 D1 D0

M 10 sec.2 10 sec.1 10 sec.0 Seconds.3 Seconds.2 Seconds.1 Seconds.0
 Contains the alarm value for the seconds and the mask bit to select or deselect the Seconds value.
/M Match: Setting this bit to 0 causes the Seconds value to be used in the alarm match logic. Setting this bit to 1

causes the match circuit to ignore the Seconds value. Battery-backed, read/write.
0x18 Companion Control
 D7 D6 D5 D4 D3 D2 D1 D0
 SNL AL/SW F1 F0 VBC FC VTP1 VTP0
SNL Serial Number Lock: Setting to a ‘1’ makes registers 10h to 17h and SNL read-only. SNL cannot be cleared once

set to ‘1’. Nonvolatile, read/write.
AL/SW Alarm/Square Wave Select: When set to ‘1’, the alarm match drives the ACS pin as well as the AF flag. When

set to ‘0’, the selected Square Wave Freq will be driven on the ACS pin, and an alarm match only sets the AF
flag. Nonvolatile, read/write.

F(1:0) Square Wave Freq Select: These bits select the frequency on the ACS pin when the CAL and AL/SW bits are
both ‘0’. Nonvolatile.

Setting F(1:0) Setting F(1:0)
 1 Hz 00 (default) 4096 Hz 10
 512 Hz 01 32768 Hz 11

VBC VBAK Charger Control: Setting VBC to ‘1’ (and FC=0) causes a 80 µA (1 mA if FC=1) trickle charge current to
be supplied on VBAK. Clearing VBC to ‘0’ disables the charge current. Battery-backed, read/write.

FC Fast Charge: Setting FC to ‘1’ (and VBC=1) causes a ~1 mA trickle charge current to be supplied on VBAK.
Clearing VBC to ‘0’ disables the charge current. Battery-backed, read/write.

VTP(1:0) VTP Select. These bits control the reset trip point for the low-VDD reset function. When VDD is below the
selected VTP voltage, the reset pin RSTB will drive low for the system. Nonvolatile, read/write.

Setting VTP(1:0)
2.60V 00 (factory default)
2.75V 01
2.9V 10
3.0V 11

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 31 of 53

0x17 Serial Number Byte 7
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.63 SN.62 SN.61 SN.60 SN.59 SN.58 SN.57 SN.56
0x16 Serial Number Byte 6
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.55 SN.54 SN.53 SN.52 SN.51 SN.50 SN.49 SN.48
0x15 Serial Number Byte 5
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.47 SN.46 SN.45 SN.44 SN.43 SN.42 SN.41 SN.40
0x14 Serial Number Byte 4
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.39 SN.38 SN.37 SN.36 SN.35 SN.34 SN.33 SN.32
0x13 Serial Number Byte 3
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.31 SN.30 SN.29 SN.28 SN.27 SN.26 SN.25 SN.24
0x12 Serial Number Byte 2
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.23 SN.22 SN.21 SN.20 SN.19 SN.18 SN.17 SN.16
0x11 Serial Number Byte 1
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.15 SN.14 SN.13 SN.12 SN.11 SN.10 SN.9 SN.8
0x10 Serial Number Byte 0
 D7 D6 D5 D4 D3 D2 D1 D0
 SN.7 SN.6 SN.5 SN.4 SN.3 SN.2 SN.1 SN.0
 All serial number bytes are read/write when SNL=0, read-only when SNL=1. Nonvolatile.

0x0F Event Counter Byte 1
 D7 D6 D5 D4 D3 D2 D1 D0
 EC.15 EC.14 EC.13 EC.12 EC.11 EC.10 EC.9 EC.8
 Event Counter Byte 1. Increments on programmed edge event on CNT input. Nonvolatile when NVC=1,

Battery-backed when NVC=0, read/write.
0x0E Event Counter Byte 0
 D7 D6 D5 D4 D3 D2 D1 D0
 EC.7 EC.6 EC.5 EC.4 EC.3 EC.2 EC.1 EC.0
 Event Counter Byte 0. Increments on programmed edge event on CNT input. Nonvolatile when NVC=1,

Battery-backed when NVC=0, read/write.

0x0D Event Counter Control
 D7 D6 D5 D4 D3 D2 D1 D0
 NVC - - - RC WC POLL CP
NVC Nonvolatile/Volatile Counter: Setting this bit to 1 makes the counter nonvolatile and counter operates only when

VDD is greater than VTP. Setting this bit to 0 makes the counter volatile, which allows counter operation under
VBAK or VDD power. Nonvolatile, read/write.

RC Read Counter. Setting this bit to 1 takes a snapshot of the two counter bytes allowing the system to read the
values without missing count events. The RC bit will be automatically cleared.

WC Write Counter. Setting this bit to a 1 allows the user to write the counter bytes. While WC=1, the counter is
blocked from count events on the CNT pin. The WC bit must be cleared by the user to activate the counter.

POLL Polled Mode: When POLL=1, the CNT pin is sampled for 30µs every 125ms. If POLL is set, the NVC bit is
internally cleared and the CP bit is set to detect a rising edge. The RTC oscillator must be enabled (/OSCEN=0)
to operate in polled mode. When POLL=0, CNT pin is continuously active. Nonvolatile, read/write.

CP The CNT pin detects falling edges when CP = 0, rising edges when CP = 1. Nonvolatile, read/write.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 32 of 53

0x0C Watchdog Control
 D7 D6 D5 D4 D3 D2 D1 D0
 WDE - - WDET4 WDET3 WDET2 WDET1 WDET0
WDE Watchdog Enable: When WDE=1, a watchdog timer fault will cause the RSTB signal to go active. When WDE

= 0 the timer runs but has no effect on the RSTB pin. Nonvolatile, read/write.
WDET(4:0) Watchdog EndTime: Sets the ending time for the watchdog window timer with 60 ms (min.) resolution. The

window timer allow independent leading and trailing edges (start and end of window) to be set. New watchdog
timeouts are loaded when the timer is restarted by writing the 1010b pattern to WR(3:0). To save power (disable
timer circuit), the EndTime may be set to all zeroes. Nonvolatile, read/write.

Watchdog EndTime WDET4 WDET3 WDET2 WDET1 WDET0
Disables Timer 0 0 0 0 0
 (min.) (max.)
 60 ms 200 ms 0 0 0 0 1
 120 ms 400 ms 0 0 0 1 0
 180 ms 600 ms 0 0 0 1 1

 1200 ms 4000 ms 1 0 1 0 0
 1260 ms 4200 ms 1 0 1 0 1
 1320 ms 4400 ms 1 0 1 1 0

 1740 ms 5800 ms 1 1 1 0 1
 1800 ms 6000 ms 1 1 1 1 0
 1860 ms 6200 ms 1 1 1 1 1

0x0B Watchdog Control
 D7 D6 D5 D4 D3 D2 D1 D0
 - - - WDST4 WDST3 WDST2 WDST1 WDST0
WDST(4:0) Watchdog StartTime. Sets the starting time for the watchdog window timer with 25 ms (max.) resolution. The

window timer allow independent leading and trailing edges (start and end of window) to be set. New watchdog
timer settings are loaded when the timer is restarted by writing the 1010b pattern to WR(3:0). Nonvolatile,
read/write.

Watchdog StartTime WDST4 WDST3 WDST2 WDST1 WDST0
0 ms (default) 0 0 0 0 0
 (min.) (max.)
 7.5 ms 25 ms 0 0 0 0 1
 15.0 ms 50 ms 0 0 0 1 0
 22.5 ms 75 ms 0 0 0 1 1

 150 ms 500 ms 1 0 1 0 0
 157.5 ms 525 ms 1 0 1 0 1
 165 ms 550 ms 1 0 1 1 0

 217.5 ms 725 ms 1 1 1 0 1
 225 ms 750 ms 1 1 1 1 0
 232.5 ms 775 ms 1 1 1 1 1

0x0A Watchdog Restart
 D7 D6 D5 D4 D3 D2 D1 D0
 - - - - WR3 WR2 WR1 WR0
WR(3:0) Watchdog Restart. Writing a pattern 1010b to WR(3:0) restarts the watchdog timer. The upper nibble contents

do not affect this operation. Writing any pattern other than 1010b to WR3-0 has no effect on the watchdog.
Write-only.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 33 of 53

0x09 Watchdog Flags
 D7 D6 D5 D4 D3 D2 D1 D0
 EWDF LWDF POR LB - - - -
EWDF Early Watchdog Timer Fault Flag: When a watchdog restart occurs too early (before the programmed watchdog

StartTime), the RSTB pin is driven low and this flag is set. It must be cleared by the user. Note that both EWDF
and POR could be set if both reset sources have occurred since the flags were cleared by the user. Battery-
backed, read/write.

LWDF Late Watchdog Timer Fault Flag: When either a watchdog restart occurs too late (after the programmed
watchdog EndTime) or no restart occurs, the RSTB pin is driven low and this flag is set. It must be cleared by
the user. Note that both LWDF and POR could be set if both reset sources have occurred since the flags were
cleared by the user. Battery-backed, read/write.

POR Power-On Reset: When the RSTB signal is activated by VDD < VTP, the POR bit will be set to 1. A manual reset
will not set this flag. Note that one or both of the watchdog flags and the POR flag could be set if both reset
sources have occurred since the flags were cleared by the user. Battery-backed, read/write. (internally set, user
must clear bit)

LB Low Backup: If the VBAK source drops to a voltage level insufficient to operate the RTC/alarm when
VDD<VBAK, this bit will be set to ‘1’. All registers need to be re-initialized since the battery-backed register
values should be treated as unknown. The user should clear it to 0 when initializing the system. Battery-backed.
Read/Write (internally set, user must clear bit).

0x08 Timekeeping – Years
 D7 D6 D5 D4 D3 D2 D1 D0
 10 year.3 10 year.2 10 year.1 10 year.0 Year.3 Year.2 Year.1 Year.0
 Contains the lower two BCD digits of the year. Lower nibble contains the value for years; upper nibble contains

the value for 10s of years. Each nibble operates from 0 to 9. The range for the register is 0-99. Battery-backed,
read/write.

0x07 Timekeeping – Months
 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 10 Month Month.3 Month.2 Month.1 Month.0
 Contains the BCD digits for the month. Lower nibble contains the lower digit and operates from 0 to 9; upper

nibble (one bit) contains the upper digit and operates from 0 to 1. The range for the register is 1-12. Battery-
backed, read/write.

0x06 Timekeeping – Date of the month
 D7 D6 D5 D4 D3 D2 D1 D0

0 0 10 date.1 10 date.0 Date.3 Date.2 Date.1 Date.0
 Contains the BCD digits for the date of the month. Lower nibble contains the lower digit and operates from 0 to

9; upper nibble contains the upper digit and operates from 0 to 3. The range for the register is 1-31. Battery-
backed, read/write.

0x05 Timekeeping – Day of the week
 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 Day.2 Day.1 Day.0
 Lower nibble contains a value that correlates to day of the week. Day of the week is a ring counter that counts

from 1 to 7 then returns to 1. The user must assign meaning to the day value, as the day is not integrated with the
date. Battery-backed, read/write.

0x04 Timekeeping – Hours
 D7 D6 D5 D4 D3 D2 D1 D0

0 0 10 hours.1 10 hours.0 Hours.3 Hours2 Hours.1 Hours.0
 Contains the BCD value of hours in 24-hour format. Lower nibble contains the lower digit and operates from 0

to 9; upper nibble (two bits) contains the upper digit and operates from 0 to 2. The range for the register is 0-23.
Battery-backed, read/write.

0x03 Timekeeping – Minutes
 D7 D6 D5 D4 D3 D2 D1 D0

0 10 min.2 10 min.1 10 min.0 Min.3 Min.2 Min.1 Min.0
 Contains the BCD value of minutes. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble

contains the upper minutes digit and operates from 0 to 5. The range for the register is 0-59. Battery-backed,
read/write.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 34 of 53

0x02 Timekeeping – Seconds
 D7 D6 D5 D4 D3 D2 D1 D0

0 10 sec.2 10 sec.1 10 sec.0 Seconds.3 Seconds.2 Seconds.1 Seconds.0
 Contains the BCD value of seconds. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble

contains the upper digit and operates from 0 to 5. The range for the register is 0-59. Battery-backed, read/write.
0x01 CAL/Control
 D7 D6 D5 D4 D3 D2 D1 D0
 - - CALS CAL.4 CAL.3 CAL.2 CAL.1 CAL.0
CALS Calibration Sign: Determines if the calibration adjustment is applied as an addition to or as a subtraction from the

time-base. This bit can be written only when CAL=1. Nonvolatile, read/write.
CAL.4-0 Calibration Code: These five bits control the calibration of the clock. These bits can be written only when

CAL=1. Nonvolatile, read/write.

0x00 RTC/Alarm Control
 D7 D6 D5 D4 D3 D2 D1 D0

OSCEN AF CF AEN Reserved CAL W R
/OSCEN Oscillator Enable. When set to ‘1’, the oscillator is halted. When set to ‘0’, the oscillator runs. Disabling the

oscillator can save battery power during storage. On a power-up without a VBAK source or on a power-up after a
VBAK source has been applied, this bit is internally set to ‘1’, which turns off the oscillator. Battery-backed,
read/write.

AF Alarm Flag: This bit is set to 1 when the time and date match the values stored in the alarm registers with the
Match bit(s) = 0. The user must clear it to ‘0’. Battery-backed. (internally set, user must clear bit)

CF Century Overflow Flag: This bit is set to a 1 when the values in the years register overflows from 99 to 00. This
indicates a new century, such as going from 1999 to 2000 or 2099 to 2100. The user should record the new
century information as needed. The user must clear the CF bit to ‘0’. Battery-backed. (internally set, user must
clear bit)

AEN Alarm Enable: This bit enables the alarm function. When AEN is set (and CAL cleared), the ACS pin operates as
an active-low alarm. The state of the ACS pin is detailed in Table 2. When AEN is cleared, no new alarm events
that set the AF bit will be generated. Clearing the AEN bit does not automatically clear AF. Battery-backed.

CAL Calibration Mode: When CAL is set to 1, the clock enters calibration mode. When CAL is set to 0, the clock
operates normally, and the ACS pin is controlled by the RTC alarm. Battery-backed, read/write.

W Write Time. Setting the W bit to 1 freezes updates of the user timekeeping registers. The user can then write
them with updated values. Setting the W bit to 0 causes the contents of the time registers to be transferred to the
timekeeping counters. Battery-backed, read/write.

R Read Time. Setting the R bit to ‘1’ copies a static image of the timekeeping core and places it into the user
registers. The user can then read them without concerns over changing values causing system errors. The R bit
going from 0 to 1 causes the timekeeping capture, so the bit must be returned to 0 prior to reading again. Battery-
backed, read/write.

Reserved Reserved bits. Do not use. Should remain set to 0.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 35 of 53

Electrical Specifications

Absolute Maximum Ratings
Symbol Description Ratings

VDD Power Supply Voltage with respect to VSS -1.0V to +3.6V
VIN Voltage on any signal pin with respect to VSS -1.0V to +5.0V and

VIN < VDD+1.0V
VBAK Backup Supply Voltage -1.0V to +4.5V
TSTG Storage Temperature -55°C to + 125°C
TLEAD Lead Temperature (Soldering, 10 seconds) 300° C
VESD Electrostatic Discharge Voltage

 - Human Body Model (JEDEC Std JESD22-A114-E)
 - Charged Device Model (JEDEC Std JESD22-C101-C)
 - Machine Model (JEDEC Std JESD22-A115-A)

TBD
TBD
TBD

 Package Moisture Sensitivity Level MSL-3
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating
only, and the functional operation of the device at these or any other conditions above those listed in the operational section of this
specification is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

DC Operating Conditions (TA = -40° C to + 85° C, VDD = 3.0V to 3.6V unless otherwise specified)

Symbol Parameter Min Typ Max Units Notes
VDD Main Power Supply 3.0 - 3.6 V 1
IDD VDD Supply Current (VBC=0) mA
ISB Standby Current

 Trickle Charger Off (VBC=0)

50

µA

3
VBAK RTC Backup Voltage 2.0 3.0 3.6 V 4
IBAK RTC Backup Current 1 µA 5
IBAKTC Trickle Charge Current with VBAK=0V

Fast Charge Off (FC = 0)
Fast Charge On (FC = 1)

50

200

200

2500

µA
µA

6

VTP0 VDD Trip Point Voltage for MCU companion &
RTC, VTP(1:0) = 00b

2.55 2.6 2.70 V 7

VTP1 VDD Trip Point Voltage for MCU companion &
RTC, VTP(1:0) = 01b

2.70 2.75 2.85 V 7

VTP2 VDD Trip Point Voltage for MCU companion &
RTC, VTP(1:0) = 10b

2.80 2.9 2.97 V 7

VTP3 VDD Trip Point Voltage for MCU companion &
RTC, VTP(1:0) = 11b

2.93 3.0 3.13 V 7

VRST VBAK > VBAK min
 VBAK < VBAK min

0
1.6

 V
V

VSW Battery Switchover Voltage 2.0 2.7 V
ILI Input Leakage Current TBD µA
ILO Output Leakage Current TBD µA
VIL Input Low Voltage

 All inputs except as listed below
 CNT battery-backed (VDD < VSW)

CNT (VDD > VSW)

-0.3
-0.3
-0.3

0.3 VDD

0.5
0.8

V
V
V

VIH Input High Voltage
 All inputs except as listed below
 CNT battery-backed (VDD < VSW)

CNT VDD > VSW
PFI

0.7 VDD

VBAK – 0.5
0.7 VDD

-

VDD + 0.3
VBAK + 0.3
VDD + 0.3
VDD + 0.3

V
V
V
V

 Continued >>

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 36 of 53

DC Operating Conditions, continued (TA = -40° C to + 85° C, VDD = 3.0V to 3.6V unless otherwise specified)
Symbol Parameter Min Typ Max Units Notes
VOL Output Low Voltage @ IOL = 3 mA - 0.4 V
VOH Output High Voltage

(PFO) @ IOH = -2 mA

VDD – 0.8

-

V

RRSTB Pull-up resistance for RSTB inactive 50 400 KΩ
VPFI Power Fail Input Reference Voltage 1.475 1.50 1.525 V
VHYS Power Fail Input (PFI) Hysteresis (Rising) - 100 mV

Notes
1. Full complete operation. Supervisory circuits, RTC, etc operate to lower voltages as specified.
2. All inputs at VSS or VDD, static. Trickle charger off (VBC=0).
3. The VBAK trickle charger automatically regulates the maximum voltage on this pin for capacitor backup applications.
4. VBAK = 3.0V, VDD < VSW, oscillator running, CNT at VBAK.
5. VBAK will source current when trickle charge is enabled (VBC bit=1), VDD > VBAK, and VBAK < VBAK max.
6. This is the VDD supply current contributed by enabling the trickle charger circuit, and does not account for IBAKTC.
7. The minimum VDD to guarantee the level of RSTB remains a valid VOL level.

AC Parameters (TA = -40° C to + 85° C, VDD = 3.0V to 3.6V, CL = 100 pF unless otherwise specified)

Symbol Parameter Min Max Units Notes
fSCL SCL Clock Frequency 0 100 kHz
tLOW Clock Low Period 4.7 µs
tHIGH Clock High Period 4.0 µs
tAA SCL Low to SDA Data Out Valid 3 µs

tBUF Bus Free Before New Transmission 4.7 µs
tHD:STA Start Condition Hold Time 4.0 µs
tSU:STA Start Condition Setup for Repeated Start 4.7 µs
tHD:DAT Data In Hold Time 0 ns
tSU:DAT Data In Setup Time TBD ns
tR Input Rise Time TBD ns 1
tF Input Fall Time TBD ns 1
tSU:STO Stop Condition Setup Time 4.0 µs
tDH Data Output Hold (from SCL @ VIL) 0 ns

All SCL specifications as well as start and stop conditions apply to both read and write operations.

Supervisor Timing (TA = -40° C to + 85° C, VDD = 3.0V to 3.6V)

Symbol Parameter Min Max Units Notes
tRPW RSTB Pulse Width (active low time) 30 100 ms
tRNR RSTB Response Time to VDD<VTP (noise filter) 7 25 µs 1
tVR VDD Rise Time 50 - µs/V 1,2
tVF VDD Fall Time 100 - µs/V 1,2
tWDST Watchdog StartTime 0.3*tDOG1 tDOG1 ms 3
tWDET Watchdog EndTime tDOG2 3.3*tDOG2 ms 3
fCNT Frequency of Event Counter 0 TBD kHz

Notes
1 This parameter is characterized but not tested.
2 Slope measured at any point on VDD waveform.
3 tDOG1 is the programmed StartTime and tDOG2 is the programmed EndTime in registers 0Bh and 0Ch, VDD > VTP, and tRPU

satisfied. The StartTime has a resolution of 25ms. The EndTime has a resolution of 60ms.
4 The RSTB pin will drive low for this amount of time after the internal reset circuit is activated due to a watchdog, low

voltage, or manual reset event.

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 37 of 53

Capacitance (TA = 25° C, f=1.0 MHz, VDD = 3.0V)
Symbol Parameter Typ Max Units Notes
CIO Input/Output Capacitance - 20 pF 1
CXTL X1, X2 Crystal pin Capacitance 25 - pF 1, 2
CCNT Max. Allowable Capacitance on CNT (polled mode) - 100 pF

Notes
1 This parameter is characterized but not tested.
2 The crystal attached to the X1/X2 pins must be rated as 12.5pF.

Data Retention (VDD = 3.0V to 3.6V)

Parameter Min Units Notes
Data Retention 10 Years

AC Test Conditions
Input Pulse Levels 10% and 90% of VDD
Input Rise and Fall Times 5 ns
Input and Output Timing Levels 0.5 VDD
Output Load Capacitance 100 pF

Diagram Notes
All start and stop timing parameters apply to both read and write cycles. Clock specifications are identical for read
and write cycles. Write timing parameters apply to slave address, word address, and write data bits. Functional
relationships are illustrated in the relevant data sheet sections. These diagrams illustrate the timing parameters only.

Read Bus Timing

t SU:STA

Start

tR ` tF

Stop Start

tBUF

tHIGH

1/fSCL

tLOW
tSP t SP

Acknowledge

t HD:DAT
tSU:DAT

tAA
tDH

SCL

SDA

Write Bus Timing

tSU:STO

Start Stop Start Acknowledge

tAA

tHD:DAT

tHD:STA
tSU:DAT

SCL

SDA

RSTB Timing

VDD
VTP

VRST

RST

tRPU

tVF

tRNR

tVR

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 38 of 53

FM6124 Interface Code Example

The following C code provides an example of basic interface to the FM6124 using Ramtron’s High Performance
VRS51L2070 (8051-based) MCU.

//
//
// $Date: 2008-03-10 13:04:43 -0400 (Mon, 10 Mar 2008) $
// $Rev: 250 $
// $Author: smalo $
// $fm6124_basic_example_vrs2070.c $
//
//
//
// Description: This file contains code examples for a
// Host MCU (Ramtron VRS51L2070) communicating with an
// Event Data Recorder (Ramtron FM6124 EDR).
// The host MCU is connected to the FM6124 with an I2C interface.
// The compiler used for this example is SDCC 2.7.0
//
// Remarks: For the purpose of this example, the device selection bits
// of the FM6124 (A0 and A1) are fixed to 1.
// See global variable "g_uiI2CDevSelect".
//
// Copyright (C) 2008 Ramtron International Corporation
//
//
#include <malloc.h>
#include "VRS51L2070_SDCC.h" // VRS51L2070 registers definitions
#include "fm6124.h" // FM6124 registers definitions

//
// Function Prototypes
//
// I2C Init functions
void InitI2C();
rbool IsI2CSlaveReady(ruint8 a_uiSlaveId);

// FM6124 Access functions
ruint8 FM6124ReadReg(ruint8 a_uiRegAddr);
rbool FM6124WriteReg(ruint8 a_uiRegAddr, ruint8 a_uiRegValue);
rbool FM6124WriteRTC(struct SBCDDate *a_poDate);
ruint8 FM6124ReadFRAM(ruint16 a_uiFramAddr);
rbool FM6124WriteFRAM(ruint16 a_uiFramAddr, ruint8 a_uiValue);
rbool FM6124ReadEventAtRP(struct SEvent *a_poEvent);
rbool FM6124StreamEventsAtRP(ruint8* a_puiEvents, ruint8 a_uiNbEvents);

// Utility functions
void Delay(ruint16 a_uiDelayMs);
rbool CreateEventsP5(ruint16 a_uiNbEvents);

//
// Global variables
//
// Fix device selection bits (A0 and A1) to 1.
// These are bits 2:1 of the first byte of an I2C transaction.
const ruint8 g_uiI2CDevSelect = 0x03 << 1;

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 39 of 53

//
// Function: main
// Description: main function of the program
// Parameters: None
// Return value: int: Error Code
// Remarks: For the purpose of this example, the return values
// of functions are not verified. In a real application,
// return values should be verified in order to make sure that
// any all operations have completed successfully.
//
int
main()
{
 __idata ruint8 l_uiDataByte = 0x00;
 __idata ruint16 l_uiNbEvents = 0x0000;
 __xdata struct SBCDDate l_oRTCValue;
 __xdata struct SEvent l_oEvent;
 __xdata ruint8* l_puiEvents = NULL;

 /////////////
 // INIT Phase
 // Initialize I2C interface, making sure FM6124 is responding.
 InitI2C();
 // Reset RTC to a defined value
 l_oRTCValue.uiSeconds = 0x00;
 l_oRTCValue.uiMinutes = 0x01;
 l_oRTCValue.uiHours = 0x02;
 l_oRTCValue.uiDay = 0x03;
 l_oRTCValue.uiDate = 0x10;
 l_oRTCValue.uiMonth = 0x09;
 l_oRTCValue.uiYear = 0x07;
 FM6124WriteRTC(&l_oRTCValue);

 // Configure Event Buffer to 1000 Events
 FM6124WriteReg(EDR_REG_BUFFER_CTRL, EDR_BC_CMD_EB_SIZE | EDR_BC_VAR_3000_EVENTS);
 Delay(1);
 FM6124WriteReg(EDR_REG_BUFFER_CTRL, EDR_BC_CMD_EB_SIZE | EDR_BC_VAR_1000_EVENTS);
 // Make sure FM6124 has enough time to setup the new Event Buffer (100us required)
 Delay(1);

 ///////////////////
 // F-RAM Write/Read
 // Write a Byte into the F-RAM at address 0x0000
 FM6124WriteFRAM(0x0000, 0xBD);
 // Read a Byte of Data in the F-RAM at address 0x0000
 l_uiDataByte = FM6124ReadFRAM(0x0000);

 ////////////////
 // Create Events
 // Enable Event Recording of Digital Input 4-11 (Rising Edges)
 FM6124WriteReg(EDR_REG_PIN_RF_B, 0xFF);
 FM6124WriteReg(EDR_REG_PIN_EE_B, 0xFF);
 // Make sure FM6124 has enough time to enable Event Recording (100us required)
 Delay(1);
 // Disable Event Recording
 FM6124WriteReg(EDR_REG_PIN_EE_B, 0x00);

 //////////////
 // Read Events
 // Read Number of Events (Number of Events between RP and WP)
 FM6124WriteReg(EDR_REG_PIN_SNAP, 0x02);
 l_uiNbEvents = FM6124ReadReg(EDR_REG_EVENT_COUNT_MSB);
 l_uiNbEvents <<= 8;
 l_uiNbEvents |= FM6124ReadReg(EDR_REG_EVENT_COUNT_LSB);

 // Read newest event:
 // 1- Move RP to the last event
 FM6124WriteReg(EDR_REG_BUFFER_CTRL, EDR_BC_CMD_LAST);
 // 2- Read Event
 FM6124ReadEventAtRP(&l_oEvent);

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 40 of 53

 // Read 5 oldest Events by streaming:
 // 1- Move RP to first event:
 FM6124WriteReg(EDR_REG_BUFFER_CTRL, EDR_BC_CMD_FIRST);
 // 2- Allocate memory for 5 Events
 l_puiEvents = malloc(5 * sizeof(struct SEvent));
 // 3- Stream 5 Events
 if (l_puiEvents != NULL)
 {
 FM6124StreamEventsAtRP(l_puiEvents, 5);
 }

 // Final note: to "see" the result of this example, it can be executed with
 // Ramtron's Versaware JTAG debugger. At this point, you can verify that all operations
 // were completed successfully by looking at the memory content of the Host MCU
 // running this program.
 if (l_uiDataByte != 0xBD)
 {
 return 1;
 }
 if (l_uiNbEvents != 10)
 {
 return 2;
 }

 return 0;
}

//
// Function: InitI2C
// Description: Enable and initialize I2C in MASTER Mode
// Parameters: None
// Return value: None
// Remarks: None
//
void
InitI2C()
{
 // Enable I2C module
 PERIPHEN1 |= 0x20;
 // Init the transmit portion of the I2CRXTX buffer
 // I2C Master
 I2CCONFIG = 0x01;
 I2CIDCFG = 0x41;
 // I2C Comm Speed = 96.15 Khz (Max speed of FM6124 is 100kHz)
 I2CTIMING = 0x0C;

 // Make sure FM6124 is responding
 while(!IsI2CSlaveReady(I2C_ID_EDR))
 {
 Delay(1000);
 }
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 41 of 53

//
// Function: IsI2CSlaveReady
// Description: Check if an I2C Slave module is ready by issuing a write
// operation. We abort the write operation after the I2C Id
// is transmitted. If the I2C Id is Acknowledged, it means
// that the I2C slave module is ready.
// Parameters: ruint8 a_uiSlaveId: Id of the Slave Module to check
// Return value: rbool: RFALSE = Slave is not ready
// RTRUE = Slave is ready
// Remarks: None
//
rbool
IsI2CSlaveReady(ruint8 a_uiSlaveId)
{
 // Send Write command to Slave Module
 I2CRXTX = a_uiSlaveId | g_uiI2CDevSelect | IC2_WRITE;

 // Wait for TX Buffer to be empty
 while(!(I2CSTATUS & 0x01));

 // Wait for I2C to be Idle
 // This will generate a STOP and cancel the Write operation
 while(!(I2CSTATUS & 0x08));

 if (I2CSTATUS & 0x40)
 {
 // No ACK received, Slave Module is not ready
 return RFALSE;
 }

 return RTRUE;
}
//
// Function: FM6124ReadReg
// Description: Read a Register of the FM6124
// Parameters: ruint8 a_uiRegAddr
// Return value: ruint8: Value of the register read
// Remarks: To Read a register on the I2C, we first need to "fake"
// a write operation in order to send the register address to the
// slave module.
//
ruint8
FM6124ReadReg(ruint8 a_uiRegAddr)
{
 ruint8 l_uiValue = 0x00;

 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);

 // Dummy Read to clear the I2CRXAVF
 l_uiValue = I2CRXTX;
 // "Fake" write operation to send the register address we want to read
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK.
 if (I2CSTATUS & 0xC0)
 {
 return 0xFF;
 }
 // Send Read Address
 I2CRXTX = a_uiRegAddr;
 // Wait for I2C to be Idle and generate a STOP
 while(!(I2CSTATUS & 0x08));
 // Make sure we received an ACK.
 if (I2CSTATUS & 0xC0)
 {
 return 0xFF;
 }

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 42 of 53

 // READ OPERATION
 // Dummy Read to clear the I2CRXAVF
 l_uiValue = I2CRXTX;
 // Make sure we will ACK the Data we will receive
 I2CCONFIG &= 0xFD;
 // Now, send the Read command to the FM6124
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_READ;
 // Wait for Data to comeback
 while(!(I2CSTATUS & 0x02));
 l_uiValue = I2CRXTX;
 // Stop the transaction
 I2CCONFIG |= 0x02;
 // Wait for I2C to be Idle and generate a STOP
 while(!(I2CSTATUS & 0x08));

 return l_uiValue;
}

//
// Function: FM6124WriteReg
// Description: Write a Register of the FM6124
// Parameters: ruint8 a_uiRegAddr
// ruint8 a_uiRegValue
// Return value: rbool: RTRUE = Operation Ok.
// Remarks: None
//
rbool
FM6124WriteReg(ruint8 a_uiRegAddr, ruint8 a_uiRegValue)
{
 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);

 // Send Write command
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send Write Address
 I2CRXTX = a_uiRegAddr;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send Write Data
 I2CRXTX = a_uiRegValue;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 // Wait for I2C to be Idle, this will generate a STOP
 while(!(I2CSTATUS & 0x08));
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 return RTRUE;
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 43 of 53

//
// Function: FM6124WriteRTC
// Description: Write all registers of the RTC of the FM6124.
// Parameters: struct SBCDDate *a_poDate: Date to be written
// Return value: rbool: RFALSE = Error during read operation.
// Remarks: None
//
rbool
FM6124WriteRTC(struct SBCDDate *a_poDate)
{
 ruint8 l_uiCounter = 0x00;
 ruint8 *l_puiDateElement = NULL;
 ruint8 l_uiRTCRegValue = 0x00;

 // First, we need to read the RTC register of the FM6124
 l_uiRTCRegValue = FM6124ReadReg(EDR_REG_RTC);
 // Next, we need to enable the writing of the RTC
 l_uiRTCRegValue |= 0x02;
 FM6124WriteReg(EDR_REG_RTC, l_uiRTCRegValue);

 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Send Write command to Slave Module
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send Write Address
 I2CRXTX = EDR_REG_RTC_SECS;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 // Write RTC Data
 l_puiDateElement = &(a_poDate->uiSeconds);
 for (l_uiCounter = 0; l_uiCounter < 7; l_uiCounter++)
 {
 I2CRXTX = *l_puiDateElement;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 l_puiDateElement++;
 }

 // Wait for I2C to be Idle, This will generate a STOP
 while(!(I2CSTATUS & 0x08));

 // Now, we need to restore the original RTC register value.
 // Clear "W" bit
 // Make sure Oscillator is running: Clear /OSCEN bit
 l_uiRTCRegValue &= 0x7D;
 FM6124WriteReg(EDR_REG_RTC, l_uiRTCRegValue);

 return RTRUE;
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 44 of 53

//
// Function: FM6124ReadFRAM
// Description: Read 1 byte of Data in the F-RAM of the FM6124
// Parameters: ruint16 a_uiFramAddr
// Return value: ruint8: Byte read
// Remarks: To Read a data on the I2C, we first need to "fake"
// a write operation in order to send the memory address to the
// slave module.
//
ruint8
FM6124ReadFRAM(ruint16 a_uiFramAddr)
{
 ruint8 l_uiDataRead;

 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);

 // Dummy Read to clear the I2CRXAVF
 l_uiDataRead = I2CRXTX;
 // Send Write command to FM6124
 I2CRXTX = I2C_ID_FM | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return 0xFF;
 }
 // Send Read Address, 8 MSB
 I2CRXTX = (a_uiFramAddr >> 8) & 0xFF;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return 0xFF;
 }
 // Send Read Address, 8 LSB
 I2CRXTX = a_uiFramAddr & 0xFF;
 // Wait for I2C to be Idle, This will generate a STOP
 while(!(I2CSTATUS & 0x08));
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return 0xFF;
 }

 // Now, send the Read command to the FM6124
 I2CRXTX = I2C_ID_FM | g_uiI2CDevSelect | IC2_READ;
 // Wait for Data to comeback
 while(!(I2CSTATUS & 0x02));
 l_uiDataRead = I2CRXTX;
 // Stop the transaction
 I2CCONFIG |= 0x02;
 // Wait for I2C to be Idle, This will generate a STOP
 while(!(I2CSTATUS & 0x08));
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return 0xFF;
 }

 return l_uiDataRead;
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 45 of 53

//
// Function: FM6124WriteFRAM
// Description: Write 1 byte of Data into the FRAM of the FM6124
// Parameters: ruint16 a_uiFramAddr
// ruint8 a_uiValue
// Return value: rbool: RTRUE = Operation successful.
// Remarks: None
//
rbool
FM6124WriteFRAM(ruint16 a_uiFramAddr, ruint8 a_uiValue)
{
 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);

 // Send Write command to FM6124
 I2CRXTX = I2C_ID_FM | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send Write Address, 8 MSB
 I2CRXTX = (a_uiFramAddr >> 8) & 0xFF;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send Write Address, 8 LSB
 I2CRXTX = a_uiFramAddr & 0xFF;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send 1 Byte of Data
 I2CRXTX = a_uiValue;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 // Wait for I2C to be Idle, This will generate a STOP
 while(!(I2CSTATUS & 0x08));
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 return RTRUE;
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 46 of 53

//
// Function: FM6124ReadEventAtRP
// Description: Read Event pointed by the current position of RP (Read Pointer)
// Parameters: struct SEvent *a_poEvent: Pointer to a SEvent, which
// will receive the Event's values.
// Return value: rbool: RTRUE = Read Ok.
// Remarks: None
//
rbool
FM6124ReadEventAtRP(struct SEvent *a_poEvent)
{
 // First, we need to indicate the FM6124 that we want to read an Event
 FM6124WriteReg(EDR_REG_BUFFER_CTRL, EDR_BC_CMD_GET);

 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);

 // Dummy Read, to clear the I2CRxAv flag.
 a_poEvent->uiEventCode = I2CRXTX;
 // "Fake" write operation to send the register address we want to read
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }
 // Send Read Address
 I2CRXTX = EDR_REG_EVT_CODE;
 // Wait for I2C to be Idle and generate a STOP
 while(!(I2CSTATUS & 0x08));
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 // READ EVENT
 // Dummy Read to clear the I2CRXAVF
 a_poEvent->uiEventCode = I2CRXTX;
 // Make sure we will ACK the Data we will receive
 I2CCONFIG &= 0xFD;
 // Now, send the Read command to the Slave ER
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_READ;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->uiEventCode = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiSeconds = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiMinutes = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiHours = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiDay = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiDate = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiMonth = I2CRXTX;
 while(!(I2CSTATUS & 0x02));
 a_poEvent->oBCDDate.uiYear = I2CRXTX;
 // Stop the transaction
 I2CCONFIG |= 0x02;
 // Wait for I2C to be Idle and generate a STOP
 while(!(I2CSTATUS & 0x08));

 return RTRUE;
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 47 of 53

//
// Function: FM6124StreamEventsAtRP
// Description: Read x events by Streaming, starting at RP
// Parameters:
// Return value: rbool: RTRUE = Read Ok.
// Remarks: User is responsible of:
// 1- Making sure a_puiEvents has enough space to contain
// a_uiNbEvents events.
// 2- There is at least a_uiNbEvents in the Event Buffer of the
// FM6124.
//
rbool
FM6124StreamEventsAtRP(ruint8* a_puiEvents, ruint8 a_uiNbEvents)
{
 ruint8 l_uiCurEvent = 0x00;
 ruint8 l_uiCurData = 0x00;
 rbool l_bEventFF = RFALSE;
 ruint8* l_puiVufPrt = a_puiEvents;

 // Send STEAM command to the FM6124
 FM6124WriteReg(EDR_REG_BUFFER_CTRL, EDR_BC_CMD_STREAM);

 // Make sure I2C is Idle
 while(!(I2CSTATUS & 0x08));
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);

 // Dummy Read, to clear the I2CRxAv flag.
 *a_puiEvents = I2CRXTX;
 // "Fake" write operation to send the register address we want to read
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_WRITE;
 // Wait for TX Buffer to be empty
 while((I2CSTATUS & 0x01) == 0);
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 } // Send Read Address
 I2CRXTX = EDR_REG_EVT_CODE;
 while(!(I2CSTATUS & 0x08)); // Wait for I2C to be Idle: STOP
 // Make sure we received an ACK and that there was no error during transfer
 if (I2CSTATUS & 0xC0)
 {
 return RFALSE;
 }

 // Start the Event Streaming by sending the read command.
 // Make sure we will ACK the Data we will receive
 I2CCONFIG &= 0xFD;
 // Dummy Read to clear the I2CRXAVF
 *a_puiEvents = I2CRXTX;
 // Now, send the Read command
 I2CRXTX = I2C_ID_EDR | g_uiI2CDevSelect | IC2_READ;
 l_uiCurEvent = 0;
 l_bEventFF = RFALSE;
 while ((l_bEventFF == RFALSE) &&
 (l_uiCurEvent < a_uiNbEvents))
 {
 l_bEventFF = RTRUE;
 // Receive 8 bytes per Event
 for (l_uiCurData = 0; l_uiCurData < 8; l_uiCurData++)
 {
 // Wait for Data to comeback
 while(!(I2CSTATUS & 0x02));
 *l_puiVufPrt = I2CRXTX;
 if (*l_puiVufPrt != 0xFF)
 {
 l_bEventFF = RFALSE;
 }
 l_puiVufPrt++;
 }
 l_uiCurEvent++;

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 48 of 53

 }

 // Stop the streaming
 I2CCONFIG |= 0x02;
 // Wait for I2C to be Idle and generate a STOP
 while(!(I2CSTATUS & 0x08));

 if ((l_uiCurEvent != a_uiNbEvents) ||
 (l_bEventFF == RTRUE))
 {
 return RFALSE;
 }

 return RTRUE;
}

//
// Function: Delay
// Description: Wait x milliseconds
// Parameters: ruint16 uiDelayMs: Delay, in ms
// Return value: None
// Remarks: Calibrated for VRS51L2070 running at 40MHZ.
// This function uses Timer0
//
void
Delay(ruint16 a_uiDelayMs)
{
 ruint16 l_uiDelayLoop = a_uiDelayMs;

 // Enable Timer 0
 PERIPHEN1 |= 0x01;

 while (l_uiDelayLoop > 0)
 {
 T0T1CLKCFG &= 0xF0;
 // Timer0 reload value for 1ms @ 40Mhz
 TH0 = 0x63;
 TL0 = 0xC0;
 // Start Timer0
 T0CON = 0x04;
 // Wait for timer0 overflow
 while (!(T0CON & 0x80));

 // Stop Timer 0
 T0CON = 0x00;
 l_uiDelayLoop--;
 }

 // Disable Timer0
 PERIPHEN1 & 0xFE;
}

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 49 of 53

Include File:

//
//
// $Date: 2008-03-10 13:04:27 -0400 (Mon, 10 Mar 2008) $
// $Rev: 249 $
// $Author: smalo $
// $HeadURL: file:…fm6124.h $
//
//
//
// Description: This file contains C functions declarations and defines
// for the Ramtron Event Data Recorder (EDR) FM6124.
//
// Remarks:
//
// Copyright (C) 2008 Ramtron International Corporation
//
//
#ifndef FM6124_H
#define FM6124_H

//
// Include and defines
//
#include "ramtron_types.h" // Ramtron basic type definitions

// I2C Ids of the FM6124
// The first byte of any I2C transaction contains the Slave Module Id.
// Bits 7:1 are used for the Id
// Bit 0 indicates if the command is Read (1) or a Write (0)
#define I2C_ID_EDR 0xA0
#define I2C_ID_FM 0xD0
#define IC2_WRITE 0x00
#define IC2_READ 0x01

//
// Type Definitions
//
typedef struct SBCDDate
{
 ruint8 uiSeconds;
 ruint8 uiMinutes;
 ruint8 uiHours;
 ruint8 uiDay;
 ruint8 uiDate;
 ruint8 uiMonth;
 ruint8 uiYear;
};

typedef struct SBCDAlarmDate
{
 ruint8 uiSeconds;
 ruint8 uiMinutes;
 ruint8 uiHours;
 ruint8 uiDate;
 ruint8 uiMonth;
};

typedef struct SEvent
{
 ruint8 uiEventCode;
 struct SBCDDate oBCDDate;
};

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 50 of 53

//
// FM6124 Enums
//
enum EventType
{
 EV_PIN0_FALL = 0x08,
 EV_PIN0_RISE = 0x09,
 EV_PIN1_FALL = 0x0A,
 EV_PIN1_RISE = 0x0B,
 EV_PIN2_FALL = 0x0C,
 EV_PIN2_RISE = 0x0D,
 EV_PIN3_FALL = 0x0E,
 EV_PIN3_RISE = 0x0F,
 EV_PIN4_FALL = 0x10,
 EV_PIN4_RISE = 0x11,
 EV_PIN5_FALL = 0x12,
 EV_PIN5_RISE = 0x13,
 EV_PIN6_FALL = 0x14,
 EV_PIN6_RISE = 0x15,
 EV_PIN7_FALL = 0x16,
 EV_PIN7_RISE = 0x17,
 EV_PIN8_FALL = 0x18,
 EV_PIN8_RISE = 0x19,
 EV_PIN9_FALL = 0x1A,
 EV_PIN9_RISE = 0x1B,
 EV_PIN10_FALL = 0x1C,
 EV_PIN10_RISE = 0x1D,
 EV_PIN11_FALL = 0x1E,
 EV_PIN11_RISE = 0x1F,
};

// FM6124 Event Data Recorder (EDR) Registers
enum EDRRegisters
{
 EDR_REG_RTC = 0x00,
 EDR_REG_CAL = 0x01,
 EDR_REG_RTC_SECS = 0x02,
 EDR_REG_RTC_MINS = 0x03,
 EDR_REG_RTC_HOURS = 0x04,
 EDR_REG_RTC_DAY = 0x05,
 EDR_REG_RTC_DATE = 0x06,
 EDR_REG_RTC_MONTH = 0x07,
 EDR_REG_RTC_YEAR = 0x08,

 EDR_REG_WD_FLAGS = 0x09,
 EDR_REG_WD_RESTART = 0x0A,
 EDR_REG_WD_CTRL0 = 0x0B,
 EDR_REG_WD_CTRL1 = 0x0C,

 EDR_REG_CNT_CTRL = 0x0D,
 EDR_REG_CNT_LSB = 0x0E,
 EDR_REG_CNT_MSB = 0x0F,

 EDR_REG_SN_BYTE0 = 0x10,
 EDR_REG_SN_BYTE1 = 0x11,
 EDR_REG_SN_BYTE2 = 0x12,
 EDR_REG_SN_BYTE3 = 0x13,
 EDR_REG_SN_BYTE4 = 0x14,
 EDR_REG_SN_BYTE5 = 0x15,
 EDR_REG_SN_BYTE6 = 0x16,
 EDR_REG_SN_BYTE7 = 0x17,

 EDR_REG_CC = 0x18,

 EDR_REG_ALM_SECS = 0x19,
 EDR_REG_ALM_MINS = 0x1A,
 EDR_REG_ALM_HOURS = 0x1B,
 EDR_REG_ALM_DATE = 0x1C,
 EDR_REG_ALM_MONTH = 0x1D,

 EDR_REG_BUFFER_CTRL = 0x20,

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 51 of 53

 EDR_REG_PIN_INT_A = 0x21,
 EDR_REG_PIN_INT_B = 0x22,
 EDR_REG_PIN_RF_A = 0x23,
 EDR_REG_PIN_RF_B = 0x24,
 EDR_REG_PIN_EE_A = 0x25,
 EDR_REG_PIN_EE_B = 0x26,
 EDR_REG_PIN_SNAP = 0x27,
 EDR_REG_PIN_STATE_A = 0x28,
 EDR_REG_PIN_STATE_B = 0x29,

 EDR_REG_EVENT_COUNT_LSB = 0x2A,
 EDR_REG_EVENT_COUNT_MSB = 0x2B,

 EDR_REG_EVT_CODE = 0x2C,
 EDR_REG_EVT_SECS = 0x2D,
 EDR_REG_EVT_MINS = 0x2E,
 EDR_REG_EVT_HOURS = 0x2F,
 EDR_REG_EVT_DAY = 0x30,
 EDR_REG_EVT_DATE = 0x31,
 EDR_REG_EVT_MONTH = 0x32,
 EDR_REG_EVT_YEAR = 0x33,
};

// Buffer Control Register Bits
enum
{
 EDR_BC_CMD_BITS = 0x0F,
 EDR_BC_DIR_BIT = 0x10,
 EDR_BC_ERR_BIT = 0x20,
 EDR_BC_VAR_BITS = 0xC0,

 EDR_BC_CMD_NOTHING = 0x0,
 EDR_BC_CMD_GET = 0x1,
 EDR_BC_CMD_GET_KEEP = 0x2,
 EDR_BC_CMD_STREAM = 0x3,
 EDR_BC_CMD_STREAM_KEEP = 0x4,
 EDR_BC_CMD_SKIP = 0x5,
 EDR_BC_CMD_FIRST = 0x6,
 EDR_BC_CMD_LAST = 0x7,
 EDR_BC_CMD_EB_SIZE = 0x8,

 EDR_BC_VAR_4000_EVENTS = 0x00,
 EDR_BC_VAR_3000_EVENTS = 0x40,
 EDR_BC_VAR_2000_EVENTS = 0x80,
 EDR_BC_VAR_1000_EVENTS = 0xC0,
};

// EDR_REG_PIN_INT_A Bits
enum
{
 EDR_PIN_INT_A_BHF_BIT = 0x10,
 EDR_PIN_INT_A_B75F_BIT = 0x20,
 EDR_PIN_INT_A_BF_BIT = 0x40,
 EDR_PIN_INT_A_CLEAR_BIT = 0x80,
 EDR_PIN_INT_A_CLEAR_BIT_MASK = 0x7F,
};

#endif // FM6124_H

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 52 of 53

MECHANICAL DRAWING

QFP-44 Package

A2
A1 c

eb

E
1

D1

D

E

L

d3

d1
d2

1

2

3

4

5

6

7

8

9

10

11

3435363738394041424344

2212 13 14 15 16 17 18 19 20 21

23

24

25

26

27

28

29

30

31

32

33

TABLE 1) DIMENSIONS OF QFP-44 PACKAGES

Symbol Description Dimension
(mm)

Tolerance
(mm, º) / Notes

D Footprint 13.2 +/- 0.25
D1 Body size 10 +/- 0.10
E Footprint 13.2 +/- 0.25
E1 Body size 10 +/- 0.10
A1 Stand-off 0.25 Max
A2 Body thickness 2.00
L Lead Length 0.88 +0.15 / -0.10
b Lead width 0.35 +/- 0.05
c L/C thickness 0.17 Max
e Lead pitch 0.8

d1 Body edge
angle 10º

d2 Lead angle 6º +/- 4º
d3 Lead angle 0º to 7º

ORDERING INFORMATION

Device
Number

Total F-RAM
Memory Size

Recorder Events
F-RAM

User Data
F-RAM Size

Package Voltage Temperature
Range

FM6124-QG 32KB 1000 - 4000 0 – 24KB QFP-44 3.0V to 3.6V -40°C to +85°C

 FM6124 Event Data Recorder

Rev. 1.0
April 2008 Page 53 of 53

Revision History

Revision

Date

Summary

1.0 04/11/2008 Initial release.

