

FM8P73B

EPROM-Based 8-Bit Microcontroller with 10 bit ADC

Devices Included in this Data Sheet:

FM8P73BA: 16-pin EPROM device
FM8P73BB: 14-pin EPROM device

FM8P73BC: 18-pin EPROM device with VR pin
 FM8P73BD: 16-pin EPROM device with VR pin

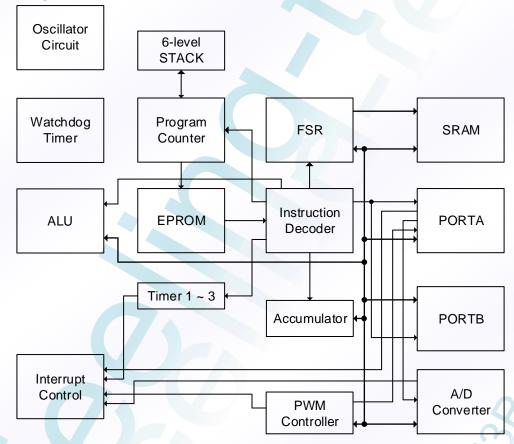
FEATURES

- Total 11 channel 10bit AD converter with ±2LSB resolution
- · All instructions are single cycle except for program branches which are two-cycles
- 14-bit wide instructions
- Configurable CPU clock per instruction cycle: Focs/4 and Fosc/2
- · All EPROM area GOTO instruction
- All EPROM area subroutine CALL instruction
- 8-bit wide data path
- 6-level deep hardware stack
- 1K x 14 bits on chip EPROM
- · 27x8 bits on chip special purpose registers and 64 x 8 bits on chip general purpose registers (SRAM)
- Operating speed: DC-20 MHz clock input, or DC-100 ns instruction cycle
- · Direct, indirect addressing modes for data accessing
- Three real time down-count Timer with 3-bit programmable prescaler
 - TMR1: 8-bit, PWM1(Period) & Timer
 - TMR2: 8-bit, PWM1(Duty) & Timer
 - TMR3: 8-bit Timer
- · Built-in 3 levels Low Voltage Detector (LVDT) for Brown-out Reset (BOR)
- Power-up Reset Timer (PWRT)
- On chip Watchdog Timer (WDT) with internal oscillator for reliable operation.
- Two I/O ports IOA, and IOB with independent direction control
 - 13 Bi-direction I/O port (Programmable Pull-up enable in Input mode)
 - One Input only port (IOB3/RSTB)
- Four kinds of interrupt source: 3 Timers, 8 external interrupt sources: IOB0~IOB7, Internal watchdog timer
 (i WDT) wakeup, and A/D end of conversion
- Wake-up from SLEEP:
 - Port B (IOB0~IOB7) pin change wakeup
 - WDT overflow
 - i WDT overflow
- Power saving SLEEP mode
- Programmable Code Protection
- Selectable oscillator options:
 - ERC: External Resistor/ Voltage Controlled Oscillator
 - XT: Crystal/Resonator Oscillator
 - HF: High Frequency Crystal/Resonator Oscillator
 - LF: Low Frequency Crystal Oscillator
 - IRC: Internal Resistor/Capacitor Oscillator
- · Wide-operating voltage range:
 - EPROM: 2.2V to 5.5V

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

GENERAL DESCRIPTION

The FM8P73B is a low-cost, high speed, high noise immunity, EPROM-based 8-bit CMOS microcontrollers. It employs a RISC architecture with 33 instructions. All instructions are single cycle except for program branches which take two cycles. The easy to use and easy to remember instruction set reduces development time significantly.

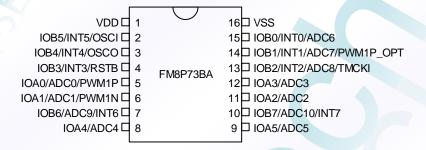

The FM8P73B consists of Power-on Reset (POR), Brown-out Reset (BOR), Power-up Reset Timer (PWRT), Watchdog Timer, EPROM, SRAM, tri-state I/O port, I/O pull-high control, Power saving SLEEP mode, 3 real time programmable clock/counter, Interrupt, Wake-up from SLEEP mode, and Code Protection for EPROM products. There are five oscillator configurations to be chosen from, including the power-saving LF (Low Frequency) oscillator and cost saving internal RC oscillator.

The FM8P73B address 1K×14 of program memory.

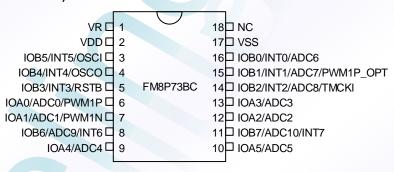
The FM8P73B can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory.

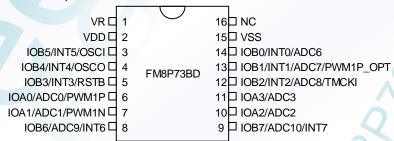
The FM8P73B provides total 11 channel 10bit AD converter with ±2LSB resolution.

BLOCK DIAGRAM



PIN CONNECTION


PDIP16, SOP16


PDIP14, SOP14

PDIP18, SOP18 (With VR PIN)

PDIP16, SOP16 (With VR PIN)

PIN DESCRIPTIONS

Name	I/O	Description
IOA0 ~ IOA5	I/O	Bi-direction I/O pin Software controlled pull-high A/D converter input IOA0 is PWM1P output (by option, default) IOA1 is PWM1N output (by option)
IOB0 ~ IOB2	I/O	 Bi-direction I/O pin with system wake-up/pin change interrupt function Software controlled pull-high A/D converter input IOB1 is PWM1P output(by option) IOB2 is External CLK input for Timer
IOB3/RSTB	I	 Input pin only with system wake-up/pin change interrupt function; voltage on this pin must not exceed VDD. System clear (RESET) input. This pin is an active low RESET to the device
IOB4/OSCO	I/O	 Bi-direction I/O port with system wake-up/pin change interrupt function Software controlled pull-high Oscillator output (HF, XT, LF, ERC mode)
IOB5/OSCI	I/O	 Bi-direction I/O port with system wake-up/pin change interrupt function (IRC mode) Software controlled pull-high Oscillator input (HF, XT, LF, ERC mode)
IOB6 ~ IOB7	I/O	 Bi-direction I/O pin with system wake-up/pin change interrupt function Software controlled pull-high A/D converter input
VR	-	ADC module reference input, voltage on this pin must not exceed VDD.
VDD	-	Positive supply
VSS	-	Ground

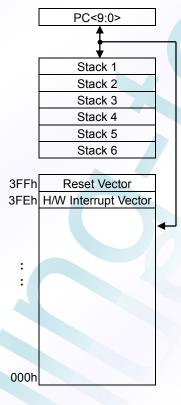
Legend: I=input, O=output, I/O=input/output

Note: Please refer to 2.2 for detail IO type description

1.0 MEMORY ORGANIZATION

FM8P73B memory is organized into program memory and data memory.

1.1 Program Memory Organization


The FM8P73B has a 10-bit Program Counter capable of addressing a 1K×14 program memory space.

The RESET vector for the FM8P73B is at 3FFh.

The H/W interrupt vector is at 3FEh.

User can use "CALL/GOTO" instructions to program user's code within entire program area.

Figure 1.1: Program Memory Map and STACK

1.2 Data Memory Organization

Data memory is composed of 27 bytes Special Function Registers and 64 bytes General Purpose Registers. The data memory can be accessed either directly or indirectly through the FSR register.

Table 1.1: Registers File Map for FM8P73B

Address	Description
00h	
:	Special Purpose
:	Register
24h	
30h	
:	General Purpose
:	Register
6Fh	

Table 1.2: Special Purpose Registers Map

		e regions.							
Address	Name	В7	В6	B5	B4	В3	B2	B1	В0
System									
00h (r/w)	INDF	Use	es contents	of FSR to	address da	ata memor	y (not a phy	sical regis	ter)
02h (r/w)	PCL				Low order 8	8 bits of PC	;		
03h (r/w)	STATUS	-	-	PS	TO	PD	Z	DC	С
04h (r/w)	FSR	0	0 Indirect data memory address pointer						
IO PAD & CONTROL									
05h (r/w)	IOSTA	-		IOSTA5	IOSTA4	IOSTA3	IOSTA2	IOSTA1	IOSTA0
06h (r/w)	PORTA			IOA5	IOA4	IOA3	IOA2	IOA1	IOA0
07h (r/w)	IOSTB	IOSTB7	IOSTB6	IOSTB5	IOSTB4	-	IOSTB2	IOSTB1	IOSTB0
08h (r/w)	PORTB	IOB7	IOB6	IOB5	IOB4	IOB3	IOB2	IOB1	IOB0
Timer1: 8-bi	t Timer & PW	/M1 Period							
0Bh (r/w)	T1CON	T1EN	T1LOAD	T1S01	T1SO0	T1EDG	T1PS2	T1PS1	T1PS0
0Ch (r/w)	PWM1CON	T12MOD	PWMS	POPS	-	PIR13	PIR12	PIR11	PIR10
0Dh (r/w)	T1LA				bit real-tim	e timer Lat	ch		
14h (r/w)	SYNPWM	SYNEN	PINV	DISN	-	-	-	DELS1	DELS0
Timer2: 8-bi	t Timer & PW	/M1 Duty							
0Fh (r/w)	T2CON	T2EN	T2LOAD	T2SO1	T2SO0	T2EDG	T2PS2	T2PS1	T2PS0
10h (r/w)	T2LA			8-	bit real-tim	e timer Lat	ch		
Timer3: 8-bi	t Timer								h
22h (r/w)	T3CON	T3EN	T3LOAD	T3SO1	T3SO0	T3EDG	T3PS2	T3PS1	T3PS0
24h (r/w)	T3LA			8-	bit real-tim	e timer Lat	ch		
IRQ									
15h (r/w)	INTEN	GIE	ADCIE	PBIE	-	-	T3IE	T2IE	T1P1IE
16h (r/w)	INTFLAG	-	ADCIF	PBIF	-	-	T3IF	T2IF	T1P1IF
ADC Contro	1								
17h (r/w)	ADCON1	ADCEN	-	-	-	CHSL3	CHSL2	CHSL1	CHSL0
18h (r/w)	ADCON2	4	-	-	-	-		CLKSL1	CLKSL0
19h (r/w)	ADCON3	/-	ı		-	ANISL3	ANISL2	ANISL1	ANISL0
1Ah (r)	ADDATL	D1	D0	-	-	-		-	-
1Bh (r)	ADDATH	D9	D8	D7	D6	D5	D4	D3	D2

FM8P73B

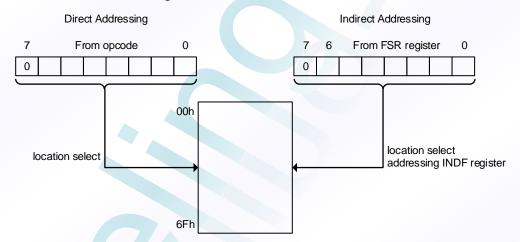
Address	Name	B7	B6	B5	B4	В3	B2	B1	B0
Others	00-								
1Dh(r/w)	APHCON	-	-	PHA5	PHA4	PHA3	PHA2	PHA1	PHA0
1Eh(r/w)	BPHCON	PHB7	PHB6	PHB5	PHB4	-	PHB2	PHB1	PHB0
20h(r/w)	INTPB	PB7IEN	PB6IEN	PB5IEN	PB4IEN	PB3IEN	PB2IEN	PB1IEN	PB0IEN
21h (r/w)	WDTCON	-	I_WDT	I_TWDT	EXCLK	-	WDTPS2	WDTPS1	WDTPS0

Legend: - = unimplemented, read as '0'.

2.0 FUNCTIONAL DESCRIPTIONS

2.1 Operational Registers

2.1.1 INDF (Indirect Addressing Register)


Address	Name	B7	B6	B5	B4	В3	B2	B1	В0
00h (r/w)	INDF	Us	es contents	of FSR to	address da	ata memory	(not a phy	sical regist	ter)

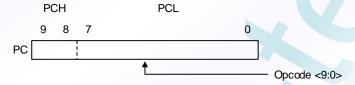
The INDF Register is not a physical register. Any instruction accessing the INDF register can actually access the register pointed by FSR Register. Reading the INDF register itself indirectly (FSR="0") will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected).

Example 2.1: INDIRECT ADDRESSING

Register file 30 contains the value 10h
Register file 31 contains the value 0Ah
Load the value 30 into the FSR Register
A read of the INDF Register will return the value of 10h
Increment the value of the FSR Register by one (@FSR=31h)
A read of the INDF register now will return the value of 0Ah.

Figure 2.1: Direct/Indirect Addressing for FM8P73B

2.1.2 PCL (Low Bytes of Program Counter) & Stack


Address	Name	B7	В6	B5	B4	В3	B2	B1	В0
02h (r/w)	PCL				Low order 8	8 bits of PC			

FM8P73B device have a 10-bits wide Program Counter (PC) and six-level deep 10-bit hardware push/pop stack. The low byte of PC is called the PCL register. This register is readable and writable.

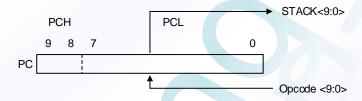
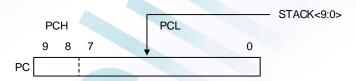
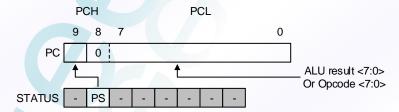

As a program instruction is executed, the Program Counter will contain the address of the next program instruction to be executed. The PC value is increased by one, every instruction cycle, unless an instruction changes the PC.

Figure 2.2: Loading of PC in Different Situations


Situation 1: GOTO Instruction


Situation 2: CALL Instruction

Situation 3: RETIA, RETFIE, or RETURN Instruction

Situation 4: Instruction with PCL as destination

Note: PC<9:8> cannot be accessed.

2.1.3 STATUS (Status Register)

Address	Name	B7	В6	B5	B4	В3	B2	B1	B0
03h (r/w)	STATUS	-	-	PS	TO	PD	Z	DC	С

Legend: - = unimplemented, read as '0'.

This register contains the arithmetic status of the ALU, the RESET status.

If the STATUS Register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS Register as destination may be different than intended. For example, CLRR STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS Register as 000u u1uu (where u = unchanged).

C: Carry/borrow bit.

ADDAR

- = 1, Carry occurred.
- = 0, No Carry occurred.

SUBAR

- = 1. No borrow occurred.
- = 0, Borrow occurred.

Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRR, RLR) instructions, this bit is loaded with either the high or low order bit of the source register.

DC: Half carry/half borrow bit

ADDAR

- = 1, Carry from the 4th low order bit of the result occurred.
- = 0, No Carry from the 4th low order bit of the result occurred.

SUBAR

- = 1, No Borrow from the 4th low order bit of the result occurred.
- = 0, Borrow from the 4th low order bit of the result occurred.

Z: Zero bit.

- = 1, The result of a logic operation is zero.
- = 0, The result of a logic operation is not zero.

PD: Power down flag bit.

- = 1, after power-up or by the CLRWDT instruction.
- = 0, by the SLEEP instruction.

TO: Watch-dog timer overflow flag bit.

- = 1, after power-up or by the CLRWDT or SLEEP instruction
- = 0, a watch-dog time overflow occurred

PS: ROM Page Select bit

- = 1, 200h ~ 2FFh
- = 0, 000h ~ 0FFh

2.1.4 FSR (Indirect Data Memory Address Pointer)

Address	Name	B7	В6	B5	B4	В3	B2	B1	B0
04h (r/w)	FSR	0		Inc	direct data	memory ad	ldress poin	ter	

Bit6:Bit0: Select registers address in the indirect addressing mode. See 2.1.1 for detail description.

Bit7: Not used. Read as 0.

2.1.5 PORTA, PORTB, IOSTA and IOSTB (Port Data Registers and Port Direction Control Registers)

Address	Name	B7	В6	B5	B4	В3	B2	B1	B0
05h (r/w)	IOSTA	-	-	IOSTA5	IOSTA4	IOSTA3	IOSTA2	IOSTA1	IOSTA0
06h (r/w)	PORTA	-	-	IOA5	IOA4	IOA3	IOA2	IOA1	IOA0
07h (r/w)	IOSTB	IOSTB7	IOSTB6	IOSTB5	IOSTB4	-	IOSTB2	IOSTB1	IOSTB0
08h (r/w)	PORTB	IOB7	IOB6	IOB5	IOB4	IOB3	IOB2	IOB1	IOB0

Legend: - = unimplemented, read as '0'.

The registers (IOSTA and IOSTB) are used to define the input or output of each port.

- = 1, Input.
- = 0, Output.

Reading the port (PORTA and PORTB register) reads the status of the pins independent of the pin's input/output modes. Writing to these ports will write to the port data latch. Please refer to 2.2 for detail I/O Port description. Note: IOB3 is read only.

2.1.6 Timer1: 8-bit Timer & PWM1 Period

The Timer1 is an 8-bit down-count timer which include latch register. Please refer to 2.3 for detail Timer description.

The Timer1 can also be combined with Timer2 as PWM1 period and duty and controlled by the register PWM1CON. Please refer to 2.4 for detail PWM description.

2.1.6.1 T1CON (Timer1 Control Register)

Address	Name	В7	B6	B5	B4	В3	B2	B1	B0
0Bh (r/w)	T1CON	T1EN	T1LOAD	T1SO1	T1SO0	T1EDG	T1PS2	T1PS1	T1PS0

T1EN: TMR1 (PWM) Enable/Disable = 1, TMR1 (PWM1) Enable. = 0, TMR1 (PWM1) Disable.

T1LOAD: Enable/Disable Latch Buffer automatically load to counter register while writing to latch register

- = 1, Enable TMR1 latch buffer automatically load to counter register while writing to latch register.
- = 0, Disable TMR1 latch buffer automatically load to counter register while writing to latch register.

Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T1SO1:T1SO0: TMR1 clock source selection

T1SO1	T1SO0	TMR1 clock source
0	0	TMCKI(IOB2)
0	1	Internal instruction clock cycle
1	0	Fosc
1	1	Fosc*2

T1EDG: TMR1 clock edge selection. This bit works only when external clock source TMCKI (IOB2) selected.

- = 1, TMR1 increased on falling edge of TMCKI pin.
- = 0, TMR1 increased on rising edge of TMCKI pin.

T1PS2:T1PS0: TMR1 Prescaler selection

	T1P	S2:T1	PS0	TMR1 Prescal rate
	0	0	0	1:1
	0	0	1	1:2
1	0	1	0	1:4
4	0	1	_1	1:8
	1	0	0	1:16
	1	0	1	1:32
	1	1	0	1:64
١	1	1	1	1:128

2.1.6.2 PWM1CON (PWM1 Control Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	В0
0Ch (r/w)	PWM1CON	T12MOD	PWMS	POPS	-	PIR13	PIR12	PIR11	PIR10

Legend: - = unimplemented, read as '0'.

T12MOD: TMR1 operation mode select bit.

= 1, The TMR1 and TMR2 in PWM mode operation.

= 0, The TMR1 and TMR2 in Timer mode operation.

PWMS: Initial State of PWM1P output duty.

= 1, Set the initial state to L, change to H when TMR2 duty underflow.

= 0, Set the initial state to H, change to L when TMR2 duty underflow.

POPS: PWM Output Pin Select bit.

= 1, The PWM1P output from IOB1.= 0, The PWM1P output from IOA0.

PIR13:PIR10: Interrupt Event Rate of PWM1.

"1:N" means interrupt occurred after "N" PWM1 pulses.

Р	IR13	: PIR1	0	PWM1 Interrupt rate
0	0	0	0	1:1
0	0	0	1	1:2
0	0	1	0	1:3
0	0	1	1	1:4
1	1	0	1	1:14
1	1	1	0	1:15
1	1	1	1	1:16

2.1.6.3 T1LA (Timer1 Latch Register)

Address	Name	B7	В6	B5	B4	В3	B2	B1	В0
0Dh (r/w)	T1LA			8-	bit real-tim	e timer Lat	ch		

T1LA is a Timer1 pre-set latch buffer, see 2.3 for detail description.

2.1.6.4 SYNPWM (Sync PWM Control Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	В0
14h (r/w)	SYNPWM	SYNEN	PINV	DISN	-	-	-	DELS1	DELS0

Legend: - = unimplemented, read as '0'.

SYNEN: Sync PWM mode enable/disable.

In PWM mode:

- = 1, Sync PWM mode Enable (PWM1N output on IOA1, PWM1P output on IOA0 or IOB1 select by POPS bit).
- = 0, Sync PWM mode Disable, IOA1 is I/O.

In Timer mode:

Ignore

PINV: PWM P invert bit.

In Sync PWM mode:

= 1, PWM1P is invert output.= 0, PWM1P is normal output.

Note: This function is only available in pin IOA0.

else: Ignore.

Ü

DISN: PWM1N enable/disable.

In Sync PWM mode:

- = 1, IOA1 is normal I/O.
- = 0, IOA1 is PWM1N output.

else: Ignore

DELS1:DELS0: Sync PWM Non overlap time (PWM1P & PWM1N) selection bits.

		Total and the second se
DELS1	DELS0	Non overlap time
0	0	1/2 cycle time
0	1	1 cycle time
1	0	3/2 cycle time
1	1	2 cycle time

2.1.7 Timer2: 8-bit Timer & PWM1 Duty

The Timer2 is an 8-bit down-count timer which include latch register. Please refer to 2.3 for detail Timer description.

2.1.7.1 T2CON (Timer2 Control Register)

Address	Name	В7	В6	B5	B4	В3	B2	B1	B0
0Fh (r/w)	T2CON	T2EN	T2LOAD	T2SO1	T2SO0	T2EDG	T2PS2	T2PS1	T2PS0

T2EN: TMR2 Enable/Disable

= 1, TMR2 (PWM1) Enable. = 0, TMR2 (PWM1) Disable.

Note: At PWM mode, Timer2 is controlled by T1EN.

T2LOAD: Enable/Disable Latch Buffer automatically load to counter register while writing to latch register

- = 1, Enable TMR2 latch buffer automatically load to counter register while writing to latch register.
- = 0, Disable TMR2 latch buffer automatically load to counter register while writing to latch register.

Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T2SO1:T2SO0: TMR2 clock source selection

T2SO1	T2SO0	TMR2 clock source
0	0	TMCKI(IOB2)
0	1	Internal instruction clock cycle
1	0	Fosc
1	1	Fosc*2

T2EDG: TMR2 clock edge selection. This bit works only when external clock source TMCKI (IOB2) selected.

- = 0, TMR2 increased on rising edge of TMCKI pin.
- = 1, TMR2 increased on falling edge of TMCKI pin.

T2PS2:T2PS0: TMR2 Prescaler selection

T2F	PS2 : T2	PS0	TMR2 Prescal rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
_1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.7.2 T2LA (Timer2 Latch Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	B0
10h (r/w)	T2LA	100		8-	bit real-time	e timer Late	ch	V	0

T2LA is a Timer2 pre-set latch buffer, see 2.3 for detail description.

2.1.8 Timer3: 8-bit Timer

The Timer3 is an 8-bit down-count timer which include latch register. Please refer to 2.3 for detail Timer description.

2.1.8.1 T3CON (Timer3 Control Register)

Address	Name	В7	В6	B5	B4	В3	B2	B1	B0
22h (r/w)	T3CON	T3EN	T3LOAD	T3SO1	T3SO0	T3EDG	T3PS2	T3PS1	T3PS0

T3EN: TMR3 Enable/Disable = 1, TMR3 Enable. = 0, TMR3 Disable.

T3LOAD: Enable/Disable Latch Buffer automatically load to counter register while writing to latch register

= 1, Enable TMR3 latch buffer automatically load to counter register while writing to latch register.

= 0, Disable TMR3 latch buffer automatically load to counter register while writing to latch register.

Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T3SO1:T3SO0: TMR3clock source selection

T3SO1	T3SO0	TMR3clock source			
0	0	TMCKI(IOB2)			
0	1	Internal instruction clock cycle			
1	0	Fosc			
1	1	No function, don't use			

T3EDG: TMR3 clock edge selection. This bit works only when external clock source TMCKI (IOB2) selected.

- = 1, TMR3 increased on falling edge of TMCKI pin.
- = 0, TMR3 increased on rising edge of TMCKI pin.

T3PS2:T3PS0: TMR3 Prescaler selection

T3F	PS2 : T3	PS0	TMR3 Prescal rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.8.2 T3LA (Timer3 Latch Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	B0
24h (r/w)	T3LA		y	8-	bit real-time	e timer Late	ch		

T3LA is a Timer3 pre-set latch buffer, see 2.3 for detail description.

2.1.9 INTEN (Interrupt Mask Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	В0
15h (r/w)	INTEN	GIE	ADCIE	PBIE	-	-	T3IE	T2IE	T1P1IE

Legend: - = unimplemented, read as '0'.

GIE: Global interrupt enable bit.

= 1, Enable all un-masked interrupts.

= 0, Disable all interrupts.

Note: When an interrupt event occurred with the GIE bit and its corresponding interrupt enable bits are set, the GIE bit will be cleared by hardware to disable any further interrupts. The RETFIE instruction will exit the interrupt routine and set the GIE bit to re-enable interrupt.

ADCIE: ADC conversion completed interrupt enable bit.

= 1, Enable interrupt.= 0, Disable interrupt.

PBIE : PORTB interrupt enable

= 1, Enable interrupt.= 0, Disable interrupt.

T3IE: Timer2 underflow interrupt enable bit.

= 1, Enable interrupt.= 0, Disable interrupt.

T2IE: Timer2 underflow interrupt enable bit.

= 1, Enable interrupt.= 0, Disable interrupt.

T1P1IE: Timer1 / PWM1 underflow interrupt enable bit.

= 1, Enable interrupt.= 0, Disable interrupt.

2.1.10 INTFLAG (Interrupt Status Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	B0
16h (r/w)	INTFLAG	-	ADCIF	PBIF	-	-	T3IF	T2IF	T1P1IF

Legend: - = unimplemented, read as '0'.

ADCIF: ADC Interrupt flag. Set when ADC conversion is completed, reset by software.

PBIF: Port B <7:0> Interrupt flag. Set when pin changed on selected I/O by register INTPB, and reset by

software.

T3IF: TMR3 interrupt flag. Set when TMR3 underflows, and reset by software.

T2IF: TMR2 interrupt flag. Set when TMR2 underflows, and reset by software.

T1P1IF: TMR1 interrupt or PWM1 interrupt flag. Set when TMR1 underflows or PWM1 pulse counts to selected

interrupt rate, and reset by software.

2.1.11 ADCON1 (AD converter Control Register1)

Address	Name	B7	B6	B5	B4	В3	B2	B1	В0
17h (r/w)	ADCON1	ADCEN	-		-	CHSL3	CHSL2	CHSL1	CHSL0

Legend: - = unimplemented, read as '0'.

ADCEN: ADC enable/disable setting

= 0, Disable.= 1, Enable.

Note: This bit should be set by software and would be reset by hardware after the ADC end of conversion.

CHSL3:CHSL0 : ADC input channel select

CHSL3	CHSL2	CHSL1	CHSL0	Input channel		
0	0	0	0	Channel 0, IOA0 pin		
0	0	0	1	Channel 1, IOA1 pin		
0	0	7	0 Channel 2, IOA2 pin			
0	0	1	1	Channel 3, IOA3 pin		
0	1	0	0	Channel 4, IOA4 pin		
0	1	0	1	Channel 5, IOA5 pin		
0	1	1	0	Channel 6, IOB0 pin		
0	1	1	1	Channel 7, IOB1 pin		
1	0	0	0	Channel 8, IOB2 pin		
1	0	0	1	Channel 9, IOB6 pin		
1	0	1	0	Channel 10, IOB7 pin		

2.1.12 ADCON2 (AD converter Control Register2)

Address	Name	B7	В6	B5	B4	В3	B2	B1	В0
18h (r/w)	ADCON2	-	-	-	-	-	-	CLKSL1	CLKSL0

Legend: - = unimplemented, read as '0'.

CLKSL1:CLKSL0: ADC Conversion clock source select bits.

CKSL1	CKSL0	Conversion clock
0	0	System clock /2 (fastest result, lowest quality)
0	1	System clock /8
1	0	System clock /32
1	1	System clock /128 (slowest result, best quality)

Note: The conversion clocks decide the conversion rate and precision. If fast conversion clock is selected, that will drop-off the precision. If want to get more accurate A/D data, use slow speed is recommended.

2.1.13 ADCON3 (AD converter Control Register3)

Address	Name	B7	В6	B5	B4	В3	B2	B1	В0
19h (r/w)	ADCON3	-	-	-	-	ANISL3	ANISL2	ANISL1	ANISL0

Legend: - = unimplemented, read as '0'.

ANISL3:ANISL0: Analog input select bits.

ANISL3	ANISL2	ANISL1	ANISL0	Analog input selection
0	0	0	0	All the ports are digital input
0	0	0	1	AN0
0	0	1	0	AN1
0	0	1	1	AN2
0	1	0	0	AN3
0	1	0	1	AN4
0	1	1	0	AN5
0	1	1	1	AN6
1	0	0	0	AN7
1	0	0	1	AN8
1	0	1	0	AN9
1	0	1	1	AN10

Note: To minimize power consumption, all the I/O pins should be carefully managed before entering sleep mode.

2.1.14 ADDATL, ADDATH (AD conversion data high and low)

Address	Name	B7	В6	B5	B4	В3	B2	B1	В0
1Ah (r)	ADDATL	D1	D0	-	-	-	-	-	-
1Bh (r)	ADDATH	D9	D8	D7	D6	D5	D4	D3	D2

Legend: - = unimplemented, read as '0'.

The ADDATL and ADDATH registers is ADC conversion result. When ADC conversion is completed, the result is loaded into ADDATL and ADDATH, the ADCEN bit will be cleared, and the ADCIF bit will be set (if ADCIE are set).

2.1.15 APHCON, BPHCON (Port A and Port B Pull-high Control)

Address	Name	B7	В6	B5	B4	В3	B2	B1	В0
1Dh(r/w)	APHCON	-	-	PHA5	PHA4	PHA3	PHA2	PHA1	PHA0
1Eh(r/w)	BPHCON	PHB7	PHB6	PHB5	PHB4	-	PHB2	PHB1	PHB0

Legend: - = unimplemented, read as '0'.

Those registers are used to setup pull-high resistor enable/disable of each IO pins.

- = 1, Pull-high resistor enable.
- = 0, Pull-high resistor disable.

2.1.16 INTPB (Port B Interrupt / Wakeup control)

Address	Name	В7	В6	B5	B4	В3	B2	B1	В0
20h(r/w)	INTPB	PB7IEN	PB6IEN	PB5IEN	PB4IEN	PB3IEN	PB2IEN	PB1IEN	PB0IEN

This register is used to enable/disable the interrupt/wakeup function of Port B. Please refer to 2.7.1 for detail description of External Interrupt and Wake up function.

- = 1, Selected IO interrupt/wakeup enable.
- = 0, Selected IO interrupt/wakeup disable.

2.1.17 WDTCON (Watchdog Timer Control Register)

Address	Name	B7	B6	B5	B4	В3	B2	B1	B0
21h (r/w)	WDTCON	-	I_WDT	I_TWDT	EXCLK		WDTPS2	WDTPS1	WDTPS0

Legend: - = unimplemented, read as '0'.

The FM8P73B builds in a watchdog timer with two different modes, normal watchdog reset and internal watchdog wakeup. The watchdog timer is controlled by this register (WDTCON). Please refer to 2.5 for detail Watchdog Timer description.

I_WDT: Internal Watchdog Wakeup mode selection.

= 1, Internal Watchdog Wakeup Enable.

= 0, Internal Watchdog Wakeup Disable.

I_TWDT: Watchdog Timer Stable time required when operating in **I_WDT** mode.

= 1, 1.25ms.

= 0, 2.5ms (default).

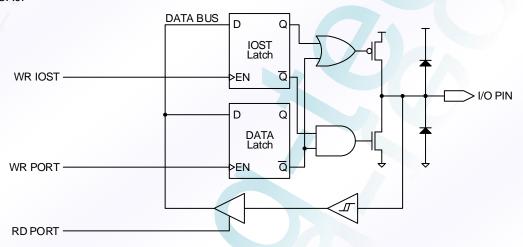
EXCLK: IOB2/TMCKI function selection

= 1, IOB2 is external clock input of timer.

= 0, IOB2 is normal I/O.

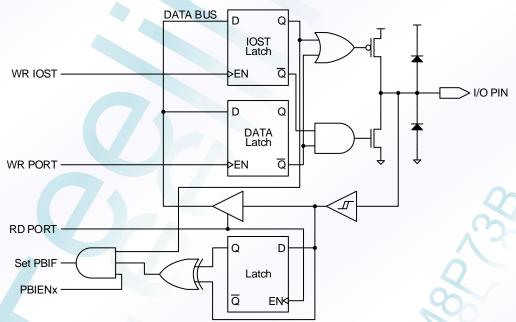
WDTPS2:WDTPS0: Watchdog timer prescaler setting

WDTI	PS2 : WD	TPS0	WDT prescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128


2.2 I/O Ports

There are totally 13 bi-directional tri-state I/O ports and one (IOB3) input only. All I/O pins (IOA<5:0>, IOB<7:0>) have specified data direction control registers (IOSTA, IOSTB) which can configure these pins as output or input. All the IO pins can also enable or disable a weak internal pull-high by setting APHCON and BPHCON. This weak pull-high will be automatically turned off when the pin is configured as an output pin.

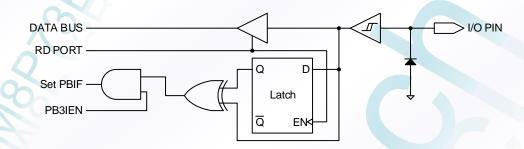
VR pin is reference voltage input pin of the ADC module, this pin does not have I/O function. The voltage on this pin must not exceed VDD, otherwise it will cause the pin burned down.


Figure 2.3: Block Diagram of I/O Pins

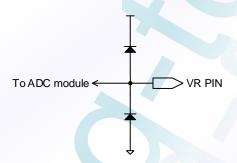
IOA5 ~ IOA0:

Pull-high/ADC control is not shown in this figure

IOB7 ~ IOB4, IOB2 ~ IOB0:



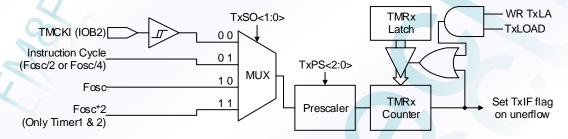
Pull-high/ADC/OSC control is not shown in this figure



IOB3:

Voltage on this pin must not exceed VDD.

VR:


Voltage on this pin must not exceed VDD.

2.3 Timer/Event Counter (TMR1, TMR2, TMR3)

The FM8P73B contains three 8-bit down-count Timers. All these timers have auto reload function, TMR1/TMR2 can be combined to perform PWM function

Figure 2.4: Block Diagram of the Timer

2.3.1 Clock Source

There are 4 clock sources could be selected by each timer separately.

2.3.1.1 TMCKI (IOB2)

The event counter mode would be activated when the source of TMCKI (IOB2) used. At this mode, the rising/falling edge of the event could also be selected separately.

2.3.1.2 Instruction cycle

In this mode, the timer will down-count on every instruction cycle (if prescaler is 1:1).

2.3.1.3 Fosc

In this mode, timer clock source defined by the Fosc bit in the configuration word.

2.3.1.4 Fosc *2

In this mode, the oscillator frequency is multiplied by 2, as the timer clock source. Oscillator modes defined by the Fosc bit in the configuration word.

Note: 1. In this mode, the frequency multiplier minimum operating voltage limits, please refer to electrical characteristics table VPWM item.

2. This mode only for Timer1 and Timer2.

2.3.2 Prescaler

Each timer contains a 3-bits prescaler which can scale the timer or counter from 1:1 to 1:128.

T1F	PS2 : T1	PS0	TMR1 Prescal rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

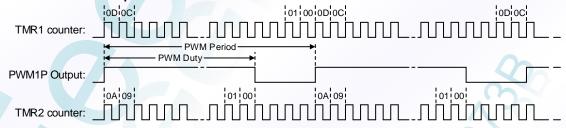
2.4 Pulse Width Modulation (PWM)

FM8P73B provides one PWM output shared with TMR1/2, TMR1 becomes the period of PWM1 and TMR2 will be the duty of PWM1.

If the system frequency is 4MHz, the range of PWM period could be from 0.5us to 8,192ms.

2.4.1 Normal PWM mode

In this mode, it is a general purpose PWM mode. Please refer to the sample program and timing diagram below.


Note: When PWM duty or period needed to be changed, the auto-load control bit of the timer (TxLOAD) must be cleared before new data writes to latch register. If this bit still set, the data written to latch register would be load into counter register immediately and cause PWM output anomaly.

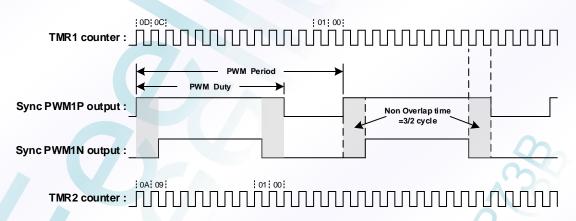
Example 2.2: PWM1 Setting (Normal mode)

Address	Code			
NA	#include	<8P73B.AS	H>	
		//Set PWM1 Perio	d	
n		MOVIA	0x61	
n+1		MOVAR	T1CON	;Set source: 4MHz IRC (250nS) Prescaler 1:2
n+2		MOVIA	0x80	
n+3		MOVAR	PWM1CON	;Set PWM interrupt rate 1:1, output on IOA0
n+4		MOVIA	0x0F	
n+5		MOVAR	T1LA	;Set period (0x0F down count to 0x00)
				;Period time = 250ns x 16 x 2 = 8uS
		//Set PWM1 Duty		
n+6		MOVIA	0x61	
n+7		MOVAR	T2CON	;Set source 4MHz IRC (250nS) Prescaler 1:2
n+8		MOVIA	0x07	
n+9		MOVAR	T2LA	;Set Duty (0x07 down count to 0x00)
				;Duty time = 250ns x 8 x2 = 4uS
n+10		BSR	T1CON,T1EN_B	;Start PWM1
n+11		MOVIA	0x81	
n+12		MOVAR	INTEN	;Enable global & PWM1 interrupt
n+13		CLRR	INTFLAG	;Clear interrupt flag

Note: The PWM duty (Timer2) must be smaller than PWM period (Timer1).

Figure 2.5: Normal PWM Output Waveform

2.4.2 Sync PWM mode


In Sync PWM mode, the PWM has two outputs. PWM1N Non overlap time can be adjusted from SYNPWM<1:0>, please refer to the sample program and the timing diagram below.

Example 2.3: PWM1 Setting (Sync mode)

MA	Address	Code		
n MOVIA 0x61 n+1 MOVAR T1CON ;Set source: 4MHz IRC (250nS) Prescaler 1:2 n+2 MOVIA 0x80 n+3 MOVAR PWM1CON ;Set PWM interrupt rate 1:1, output on IOA0 n+4 MOVIA 0x0F n+5 MOVAR T1LA ;Set period (0x0F down count to 0x00) ;Period time = 250ns x 16 x 2 = 8uS //Set PWM1 Duty n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10 MOVIA 0x82 n+11 MOVIA 0x82 n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	NA	#include <8P73B.AS	:H>	
n MOVIA 0x61 n+1 MOVAR T1CON ;Set source: 4MHz IRC (250nS) Prescaler 1:2 n+2 MOVIA 0x80 n+3 MOVAR PWM1CON ;Set PWM interrupt rate 1:1, output on IOA0 n+4 MOVIA 0x0F n+5 MOVAR T1LA ;Set period (0x0F down count to 0x00) ;Period time = 250ns x 16 x 2 = 8uS //Set PWM1 Duty n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10 MOVIA 0x82 n+11 MOVIA 0x82 n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt				
n+1 MOVAR T1CON ;Set source: 4MHz IRC (250nS) Prescaler 1:2 n+2 MOVIA 0x80 n+3 MOVAR PWM1CON ;Set PWM interrupt rate 1:1, output on IOA0 n+4 MOVIA 0x0F n+5 MOVAR T1LA ;Set period (0x0F down count to 0x00) ;Period time = 250ns x 16 x 2 = 8uS ;Set PWM1 Duty n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS ;Set Sync PWM n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt		//Set PWM1 Perio	d	
n+2 MOVIA 0x80 n+3 MOVAR PWM1CON ;Set PWM interrupt rate 1:1, output on IOA0 n+4 MOVIA 0x0F	n	MOVIA	0x61	
n+3 MOVAR PWM1CON ;Set PWM interrupt rate 1:1, output on IOA0 n+4 MOVIA 0x0F n+5 MOVAR T1LA ;Set period (0x0F down count to 0x00) ;Period time = 250ns x 16 x 2 = 8uS ;Period time = 250ns x 16 x 2 = 8uS //Set PWM1 Duty MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM puty time = 250ns x 8 x2 = 4uS n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+1	MOVAR	T1CON	;Set source: 4MHz IRC (250nS) Prescaler 1:2
n+4 MOVIA 0x0F n+5 MOVAR T1LA ;Set period (0x0F down count to 0x00) ;Period time = 250ns x 16 x 2 = 8uS //Set PWM1 Duty n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+2	MOVIA	0x80	
n+5 MOVAR T1LA ;Set period (0x0F down count to 0x00) ;Period time = 250ns x 16 x 2 = 8uS //Set PWM1 Duty n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+3	MOVAR	PWM1CON	;Set PWM interrupt rate 1:1, output on IOA0
;Period time = 250ns x 16 x 2 = 8uS //Set PWM1 Duty n+6	n+4	MOVIA	0x0F	
//Set PWM1 Duty n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+5	MOVAR	T1LA	;Set period (0x0F down count to 0x00)
n+6 MOVIA 0x61 n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 ;Set Duty (0x07 down count to 0x00) n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS ;Duty time = 250ns x 8 x2 = 4uS n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt				;Period time = 250ns x 16 x 2 = 8uS
n+7 MOVAR T2CON ;Set source 4MHz IRC (250nS) Prescaler 1:2 n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM NOVIA 0x82 n+10 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt		//Set PWM1 Duty		
n+8 MOVIA 0x07 n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS ;Duty time = 250ns x 8 x2 = 4uS n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+6	MOVIA	0x61	
n+9 MOVAR T2LA ;Set Duty (0x07 down count to 0x00) ;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+7	MOVAR	T2CON	;Set source 4MHz IRC (250nS) Prescaler 1:2
;Duty time = 250ns x 8 x2 = 4uS //Set Sync PWM n+10	n+8	MOVIA	0x07	
//Set Sync PWM n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+9	MOVAR	T2LA	;Set Duty (0x07 down count to 0x00)
n+10 MOVIA 0x82 n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt				;Duty time = 250ns x 8 x2 = 4uS
n+11 MOVAR SYNPWM ;Set PWM1P is normal, IOA1 is PWM1N output ;Non overlap time = 3/2 cycle time ;Non overlap time = 3/2 cycle time n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt		//Set Sync PWM		
;Non overlap time = 3/2 cycle time n+12	n+10	MOVIA	0x82	
n+12 BSR T1CON,T1EN_B ;Start PWM1 n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+11	MOVAR	SYNPWM	;Set PWM1P is normal, IOA1 is PWM1N output
n+13 MOVIA 0x81 n+14 MOVAR INTEN ;Enable global & PWM1 interrupt				;Non overlap time = 3/2 cycle time
n+14 MOVAR INTEN ;Enable global & PWM1 interrupt	n+12	BSR	T1CON,T1EN_B	;Start PWM1
,	n+13	MOVIA	0x81	
n+15 CLRR INTFLAG ;Clear interrupt flag	n+14	MOVAR	INTEN	;Enable global & PWM1 interrupt
	n+15	CLRR	INTFLAG	;Clear interrupt flag

Note: The PWM duty (Timer2) must be smaller than PWM period (Timer1).

Figure 2.6: Sync PWM Waveform

2.5 Watch Dog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. So the WDT will still run even if the clock on the OSCI and OSCO pins is turned off, such as in SLEEP mode.

The WDT has a typical time-out period of 20 ms (without prescaler). This period of this timer may be variant slightly because of temperature, voltage, and process variation. If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT controlled by the WDTCON register <2:0>. Thus, the longest time-out period is approximately 2.56 seconds.

The CLRWDT instruction clears the WDT and prevents it from timing out and generating a device reset. The SLEEP instruction also resets the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

There are two type of watchdog timer mode could be selected by I_WDT (WDTCON <6>). When I_WDT bit disable, normal watchdog timer reset is selected. During normal operation or in SLEEP mode, a WDT time-out will cause the device reset and the TO bit (STATUS<4>) will be cleared.

If I_WDT bit enabled, the internal watchdog timer wakeup will be used. The system wakeups from sleep, then jumps into interrupt vector with external interrupt request PBIF (INTFLAG<5>) and continues from next instruction instead of triggering a reset event. There is a stabilization time required for internal watchdog wakeup could be selected by I_TWDT (WDTCON<5>). The default value of this stabilization timer is 2.5ms.

Example 2.4: Internal Watchdog Wakeup

Address	Code		
NA	#include <8P73B.AS	SH>	
n	MOVIA	0xA0	
n+1	MOVAR	INTEN	;Enable global & Port B interrupt
n+2	CLRWDT		
n+3	MOVIA	0x67	
n+4	MOVAR	WDTCON	;Sleep: 2.56S + Wakeup:1.25mS
n+5			
n+6			
n+7	SLEEP		
n+8	NOP		
		1. WDT Wak	reup
	2. Return from ISR		
N/A	ISR:	\	;In this example, ISR define at 0x200
200			;User WDT Wakeup ISR code
200+n	MOVIA	0xDF	
200+n+1	MOVAR	INTFLAG /	;Clear PBIF flag ^(Note1)
200+n+2	RETFIE		
0x3FE	GOTO	ISR	
0x3FF	GOTO	START	

Note: 1. BCR instruction is not recommended for Clear interrupt flag (INTFLAG register).

2. Interrupt save status code is not shown in this example.

Example 2.5: Typical Watchdog Reset

Address	Code			
NA	#include	<8P73B.AS	SH>	
		•••		
n		CLRWDT		
n+1		MOVIA	0x07	
n+2		MOVAR	WDTCON	;Sleep: 2.56S + Wakeup:20mS
n+3		•••		
n+4				
n+5		SLEEP		
n+6		NOP		
			WDT Darat	
			WDT Reset	
			/	
0x3FF		GOTO	START 🖈	

2.6 Reset

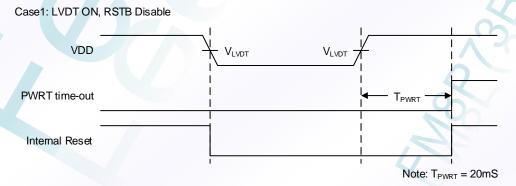
FM8P73B device may be RESET in one of the following ways:

- 1. Power-on Reset (POR)
- 2. Brown-out Reset (BOR)
- 3. RSTB Pin Reset
- 4. WDT time-out Reset

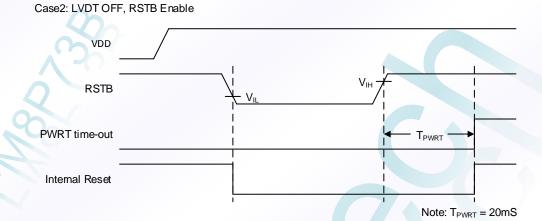
Some registers are not affected in any RESET condition. Their status is unknown on Power-on Reset and unchanged in any other RESET. Most other registers are reset to a "reset state" on Power-on Reset, RSTB or WDT Reset.

A Power-on RESET pulse is generated on-chip when Vdd rise is detected. To use this feature, the user merely ties the RSTB pin to Vdd.

On-chip Low Voltage Detector (LVDT) places the device into reset when Vdd is below a fixed voltage. This ensures that the device does not continue program execution outside the valid operation Vdd range. Brown-out RESET is typically used in AC line or heavy loads switched applications.


A RSTB or WDT Wake-up from SLEEP also results in a device RESET, and not a continuation of operation before SLEEP

The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits (STATUS<4:3>) are set or cleared depending on the different reset conditions.


2.6.1 Power-up Reset Timer(PWRT)

The Power-up Reset Timer provides a nominal 20ms delay after Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset or WDT time-out Reset. The device is kept in reset state as long as the PWRT is active. The PWDT delay will vary from device to device due to Vdd, temperature, and process variation.

Figure 2.7: Reset Timing

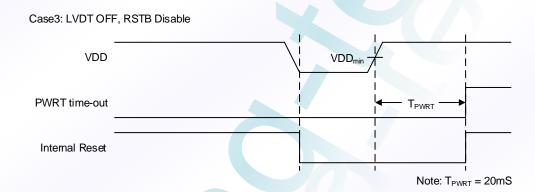
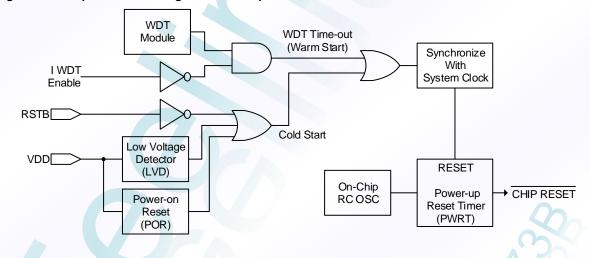



Figure 2.8: Simplified Block Diagram of on-chip Reset Circuit

Table 2.1: Reset Conditions for Operational Registers

Register	Address	Power-on Reset Brown-out Reset	WDT Reset RSTB Reset
ACC	N/A	xxxx xxxx	uuuu uuuu
INDF	00h	XXXX XXXX	uuuu uuuu
PCL	02h	1111 1111	1111 1111
STATUS	03h	0001 1xxx	000# #xxx
FSR	04h	0xxx xxxx	Ouuu uuuu
IOSTA	05h	0011 1111	0011 1111
PORTA	06h	00xx xxxx	00uu uuuu
IOSTB	07h	1111 0111	1111 0111
PORTB	08h	xxxx xxxx	uuuu uuuu
T1CON	0Bh	0000 0000	0000 0000
PWM1CON	0Ch	0000 0000	0000 0000
T1LA	0Dh	1111 1111	1111 1111
T2CON	0Fh	0000 0000	0000 0000
T2LA	10h	1111 1111	1111 1111
SYNPWM	14h	0000 0000	0000 0000
INTEN	15h	0000 0000	0000 0000
INTFLAG	16h	0000 0000	0000 0000
ADCON1	17h	0000 0000	0000 0000
ADCON2	18h	0000 0000	0000 0000
ADCON3	19h	0000 0000	0000 0000
ADDATL	1Ah	0000 0000	0000 0000
ADDATH	1Bh	0000 0000	0000 0000
APHCON	1Dh	0000 0000	0000 0000
BPHCON	1Eh	0000 0000	0000 0000
INTPB	20h	0000 0000	0000 0000
WDTCON	21h	0000 0111	0000 0111
T3CON	22h	0000 0000	0000 0000
T3LA	24h	1111 1111	1111 1111
General Purpose Registers	30 ~ 6Fh	xxxx xxxx	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented, # = refer to the following table for possible values.

Table 2.2: TO / PDStatus after Reset or Wake-up

TO	PD	RESET was caused by			
1	1	Power-on Reset / Brown-out reset			
u	u	RSTB Reset during normal operation			
1	0	RSTB Reset during SLEEP			
0	1	WDT timer overflow from normal mode			
0	0	WDT timer overflow from sleep mode			

2.7 Interrupt

The FM8P73B has three kinds of interrupt sources:

- 1. 8 External IOB<0:7> pin changed interrupt
- 2. 3 Timers underflow interrupt (or PWM interrupt)
- 3. ADC conversion completion interrupt

INTFLAG is the interrupt flag register that recodes the interrupt requests to the relative flags.

A global interrupt enable bit, GIE (INTEN<7>), enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be enabled/ disabled through their corresponding enable bits in INTEN register regardless of the status of the GIE bit.

When an interrupt event occur with the GIE bit and its corresponding interrupt enable bit are all set, the GIE bit will be cleared by hardware to disable any further interrupts, and the next instruction will be fetched from address 3FEh. The interrupt flag bits must be cleared by software before re-enabling GIE bit to avoid recursive interrupts. The RETFIE instruction exits the interrupt routine and set the GIE bit to re-enable interrupt.

The flag bit in INTFLAG register is set by interrupt event regardless of the status of its mask bit.

2.7.1 PORTB<0:7> External Interrupt and Wakeup Function

The external interrupt on PORTB<0:7> are selected by INTPB<0:7> and PBIE (INTEN<5>). When the device is in normal mode and the specified IO status changed, the interrupt event will be triggered and the program will jump to 3FEh.

When the device is in sleep mode, those interrupts can also be used as an external wakeup signal. The device will restart system clock and the program will jump to 3FEh after startup timer timeout.

Example 2.6: External IOB0 pin change interrupt

Address	Code			
NA	#include	<8P73B.ASH>		
		•••		
n		MOVIA	0xFF	
n+1		MOVAR	IOSTB	;Set Port B as input
n+2		MOVIA	0xA0	
n+3		MOVAR	INTEN	;Enable global & Port B interrupt
n+4		MOVIA	0xDF	
n+5		MOVAR	INTFALG	;Clear PBIF flag ^(Note1)
n+6		MOVR	PORTB,R	;Update Port B pin status
n+7		MOVIA	0x01	
n+8		MOVAR	INTPB	;Set IOB0 pin change
		•••		
	4			
			1. IOB0 pir	n change
	/ 2. 1	Return from ISR		
N/A	ISR:		\	;In this example, ISR define at 0x200
200				;User Port B pin change ISR code
200+n		MOVIA	0xDF	
200+n+1		MOVAR	INTFLAG /	;Clear PBIF flag ^(Note1)
200+n+2		RETFIE		
3FE		GOTO	ISR	
3FF	7	GOTO	START	

Note: 1. BCR instruction is not recommended for Clear interrupt flag (INTFLAG register).

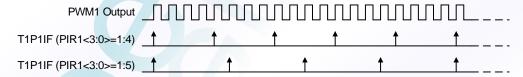
2. Interrupt save status code is not shown in this example.

Example 2.7: External IOB0 pin change wakeup interrupt

Address	Code	20-			
NA	#include	<8P73B.ASH>			
n		MOVIA	0xFF		
n+1		MOVAR	IOSTB		;Set Port B as input
n+2		MOVIA	0xA0		
n+3		MOVAR	INTEN		;Enable global & Port B interrupt
n+4		MOVIA	0xDF		
n+5		MOVAR	INTFALG		;Clear PBIF flag ^(Note1)
n+6		MOVR	PORTB,R		;Update Port B pin status
n+7		MOVIA	0x01		
n+8		MOVAR	INTPB		;Set IOB0 pin change wakeup
n+9		SLEEP			
n+10	*	NOP			
			1	. IOB0 pin	change
	/ 2. R	eturn from ISR			
N/A	ISR:		/		;In this example, ISR define at 0x200
200					;User Port B pin change wakeup ISR code
200+n	\	MOVIA	0xDF		
200+n+1		MOVAR	INTFLAG /		;Clear PBIF flag ^(Note1)
200+n+2		RETFIE	/		
3FE		GOTO	ISR 🗸		
3FF		GOTO	START		

Note: 1. BCR instruction is not recommended for Clear interrupt flag (INTFLAG register).

2. Interrupt save status code is not shown in this example.


2.7.2 Timer1~3 Interrupt Function

2.7.2.1 Timer1 (PWM1) interrupt

At Timer mode, an underflow (00h \rightarrow FFh) in the TMR1 counter will set the flag bit T1P1IF (INTFLAG<0>). This interrupt can be disabled by clearing T1P1IE bit (INTEN<0>).

At PWM mode, the end of each PWM period cycle to generate an interrupt. The interrupt rate can be adjusted by PIR13:10 (PWM1CON <3:0>).

Figure 2.9: PWM Interrupt Waveform (Normal PWM or Sync PWM mode)

2.7.2.2 Timer2 interrupt

At Timer mode, an underflow (00h \rightarrow FFh) in the TMR2 counter will set the flag bit T2IF (INTFLAG<1>). This interrupt can be disabled by clearing T2IE bit (INTEN<1>).

At PWM mode, TMR2 is PWM1 duty cycle counter. Not generate an interrupt.

2.7.2.3 Timer3 interrupt

An underflow (00h \rightarrow FFh) in the TMR3 counter will set the flag bit T3IF (INTFLAG<2>). This interrupt can be disabled by clearing T3IE bit (INTEN<2>).

2.7.3 ADC conversion completion interrupt

When the A/D conversion is completed, the flag bit ADCIF (INTFLAG <6>) will be set. And the ADCIF bit can be cleared by software.

This interrupt can be disabled by clearing ADCIE bit (INTEN<6>).

2.8 Analog to Digital Converter (ADC)

This analog to digital converter has 11 channels 10bits (8+2) resolution. The ADC is controlled by three control register, ADCON1, ADCON2, and ADCON3.

Example 2.8: Analog to Digital Conversion (Channel0 AD conversion)

Address	Code			
NA	#include	<8P73B.ASH>		
n		BTRSC	ADCON1,ADCEN_B	
n+1		GOTO	\$-1	;Make Sure no ADC is processing
n+2		MOVIA	0xBF	
n+3		MOVAR	INTFLAG	;Clear ADCIF flag ^(Note)
n+4		MOVIA	0x00	
n+5		MOVAR	ADCON1	;Select ADC Channel 0 (IOA0) conversion
n+6		MOVIA	0x03	
n+7		MOVAR	ADCON2	;Set AD conversion rate: System clock / 128
n+8		MOVIA	0x01	
n+9		MOVAR	ADCON3	;Set AN0 analog input
n+10		BSR	ADCON1,ADCEN_B	;ADC conversion start
n+11		BTRSS	INTFLAG,ADCIF_B	
n+12		GOTO	\$-1	;Wait AD end of conversion
n+13		MOVR	ADDATH,A	;Read ADC high byte data
n+14		MOVAR		
n+15		MOVR	ADDATL,A	;Read ADC low byte data
n+16		MOVAR		

Note: BCR instruction is not recommended for Clear interrupt flag (INTFLAG register).

2.9 Oscillator Configurations

FM8P73B can be operated in five different combinations of oscillator modes. Users can program configuration word (Fosc) to select the appropriate modes. The five different system clock modes are combination of the following oscillators:

- LF: Low Frequency Crystal Oscillator
- XT: Crystal/Resonator Oscillator
- HF: High Frequency Crystal/Resonator Oscillator
- ERC: External Resistor/ Voltage Controlled Oscillator
- IRC: Internal Resistor/Capacitor Oscillator

In LF, XT, or HF modes, a crystal or ceramic resonator in connected to the OSCI and OSCO pins to establish oscillation. When in LF, XT, or HF modes, the devices can have an external clock source drive the OSCI pin. The ERC device option offers additional cost savings for timing insensitive applications. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext), the operating temperature, and the process parameter.

The IRC option offers largest cost savings for timing insensitive applications.

Figure 2.10: HF, XT or LF Oscillator Modes (Crystal Operation or Ceramic Resonator)

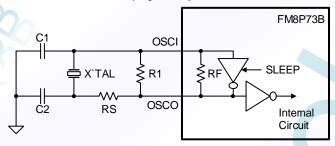


Figure 2.11: HF, XT or LF Oscillator Modes (External Clock Input Operation)

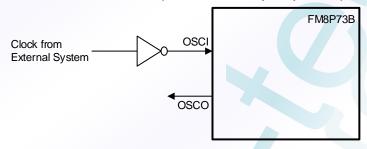
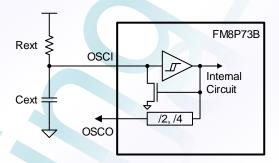
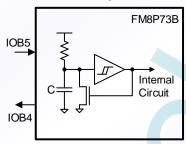



Figure 2.12: ERC (External Resistor Controlled) Oscillator Mode


The typical oscillator frequency vs. external resistor is as following table When Cext = 0.01uf(103)

5V		3V		
Rext	Frequency	Rext	Frequency	
4.3M	32 KHz	3.6M	32 KHz	
210K	500 KHz	238K	500 KHz	
108K	1.0 MHz	116K	1.0 MHz	
56K	2.0 MHz	59K	2.0 MHz	
30K	4.0 MHz	30K	4.0 MHz	
16K	8.0 MHz	16K	8.0 MHz	
11K	12.0 MHz	11K	12.0 MHz	

Note: Values are provided for design reference only.

Figure 2.13: IRC Oscillator Mode (Internal R, Internal C Oscillator)

2.10 Configuration Words

Table 2.3: Configuration Words

Name	Description
	Oscillator Selection Bit
	→ IRC(4MHz) mode (default)
	→ ERC mode
Fosc	→ HF crystal mode
	→ XT crystal mode
	→ LF crystal mode
	Note: See Table 2.4 for detail description.
	Watchdog Timer Enable Bit
WDTEN	→ WDT enabled (default)
	→ WDT disabled
	Low Voltage Detector Selection Bit
	→ LVDT Disable (default)
LVDT	→ LVDT = 2.0V
	→ LVDT = 2.3V
	→ LVDT = 3.5V
	IOB3/RSTB Pin Selection Bit
RSTBIN	→ RSTB pin is selected (default)
	→ IOB3 pin is selected
	Power On Reset time Selection Bit
PWRT	→ 20ms is selected (default)
	→ 5ms is selected
	Instruction Period Selection Bit
OSCD	→ four oscillator periods (4T) (default)
	→ two oscillator periods (2T)
	IOB4/OSCO Pin Selection Bit
OSCOUT	→ OSCO pin is selected (default)
	→ IOB4 pin is selected
	Code Protection Bit
PROTECT	→ NO, EPROM code protection off (default)
	→ YES, EPROM code protection on

Table 2.4: Selection of IOB5/OSCI and IOB4/OSCO Pin

-			
	Mode of oscillation	IOB5/OSCI	IOB4/OSCO
IRC		Force to IOB5 Force to IOB4	
	ERC	Force to OSCI	IOB4/OSCO selected by OSCOUT bit
HF, XT, LF		Force to OSCI	Force to OSCO

3.0 INSTRUCTION SET

Mnemonic, Operands		Description	Operation	Cycles	Status Affected
BCR	R, bit	Clear bit in R	0 → R 	1	-
BSR	R, bit	Set bit in R	1 → R 	1	-
BTRSC	R, bit	Test bit in R, Skip if Clear	Skip if R = 0	1/2 ⁽¹⁾	-
BTRSS	R, bit	Test bit in R, Skip if Set	Skip if R = 1	1/2 ⁽¹⁾	-
NOP		No Operation	No operation	1	- /
CLRWDT		Clear Watchdog Timer	00h → WDT, 00h → WDT prescaler	1	TO, PD
SLEEP		Go into power-down mode	00h → WDT, 00h → WDT prescaler	1	TO, PD
RETURN		Return from subroutine	Top of Stack → PC	2	-
RETFIE		Return from interrupt, set GIE bit	Top of Stack → PC, 1 → GIE	2	-
CLRA		Clear ACC	00h → ACC	1	Z
CLRR	R	Clear R	00h → R	1	Z
MOVAR	R	Move ACC to R	ACC → R	1	-
MOVR	R, d	Move R	R → dest	1	Z
DECR	R, d	Decrement R	R - 1 → dest	1	Z
DECRSZ	R, d	Decrement R, Skip if 0	R - 1 → dest, Skip if result = 0	1/2 ⁽¹⁾	-
INCR	R, d	Increment R	R + 1 → dest	1	Z
INCRSZ	R, d	Increment R, Skip if 0	R + 1 → dest, Skip if result = 0	1/2 ⁽¹⁾	-
ADDAR	R, d	Add ACC and R	R + ACC → dest	1	C, DC, Z
SUBAR	R, d	Subtract ACC from R	R - ACC → dest	1	C, DC, Z
ANDAR	R, d	AND ACC with R	ACC and R → dest	1	Z
IORAR	R, d	Inclusive OR ACC with R	ACC or R → dest	1	Z
XORAR	R, d	Exclusive OR ACC with R	R xor ACC → dest	1	Z
COMR	R, d	Complement R	R → dest	1	Z
RLR	R, d	Rotate left R through Carry	R<7> → C, R<6:0> → dest<7:1>, C → dest<0>	1	С
RRR	R, d	Rotate right R through Carry	C → dest<7>, R<7:1> → dest<6:0>, R<0> → C	1	С
SWAPR	R, d	Swap R	R<3:0> → dest<7:4>, R<7:4> → dest<3:0>	1	<u></u>
MOVIA	I	Move Immediate to ACC	I → ACC	1	
ANDIA	I	AND Immediate with ACC	ACC and I → ACC	1	Z
IORIA	I	OR Immediate with ACC	ACC or I → ACC	1	Z
XORIA	1	Exclusive OR Immediate to ACC	ACC xor I → ACC	1	Z
RETIA	1	Return, place Immediate in ACC	I → ACC, Top of Stack → PC	2	-
CALL		Call subroutine	PC + 1 \rightarrow Top of Stack, I \rightarrow PC<10:0>		-

Mnemonic, Operands	Description	Operation	Cycles	Status Affected
GOTO I	Unconditional branch	I → PC<10:0>	2	-

Note: 1. 2 cycles for skip, else 1 cycle.
2. bit: Bit address within an 8-bit register R
R: Register address (00h to 6Fh)

1 : Immediate data ACC : Accumulator
d : Destination select;
=0 (store result in ACC)

=1 (store result in file régister R)

dest : Destination

PC : Program Counter
WDT : Watchdog Timer Counter
GIE : Global interrupt enable bit

TO : Time-out bit
PD : Power-down bit C : Carry bit
DC : Digital carry bit
Z : Zero bit

Web site: http://www.feeling-tech.com.tw

ADDAR Add ACC and R

Syntax: ADDAR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: ACC + R → dest

Status Affected: C, DC, Z

Description: Add the contents of the ACC register and register 'R'. If 'd' is 0 the result is stored in the

ACC register. If 'd' is '1' the result is stored back in register 'R'.

Cycles: 1

ANDAR AND ACC and R

Syntax: ANDAR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: ACC and R → dest

Status Affected: Z

Description: The contents of the ACC register are AND'ed with register 'R'. If 'd' is 0 the result is stored

in the ACC register. If 'd' is '1' the result is stored back in register 'R'.

Cycles: 1

ANDIA AND Immediate with ACC

Syntax: ANDIA I Operands: $0 \le I \le 0xFF$

Operation: ACC AND I → ACC

Status Affected: Z

Description: The contents of the ACC register are AND'ed with the 8-bit immediate 'l'. The result is

placed in the ACC register.

Cycles: 1

BCR Clear Bit in R

Syntax: BCR R, b Operands: $0 \le R \le 0x6F$

 $0 \le b \le 7$

Operation: $0 \rightarrow R < b >$ Status Affected: None

Description: Clear bit 'b' in register 'R'.

Cycles: 1

BSR Set Bit in R

Syntax: BSR R, b Operands: $0 \le R \le 0x6F$

 $0 \le b \le 7$

Operation: $1 \rightarrow R < b >$ Status Affected: None

Description: Set bit 'b' in register 'R'.

BTRSC Test Bit in R, Skip if Clear

Syntax: BTRSC R, b Operands: $0 \le R \le 0x6F$

 $0 \le b \le 7$

Operation: Skip if R < b > = 0

Status Affected: None

Description: If bit 'b' in register 'R' is 0 then the next instruction is skipped.

If bit 'b' is 0 then next instruction fetched during the current instruction execution is

discarded, and a NOP is executed instead making this a 2-cycle instruction.

Cycles: 1/2

BTRSS Test Bit in R, Skip if Set

Syntax: BTRSS R, b Operands: $0 \le R \le 0x6F$

 $0 \le b \le 7$

Operation: Skip if R < b > = 1

Status Affected: None

Description: If bit 'b' in register 'R' is '1' then the next instruction is skipped.

If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is

discarded and a NOP is executed instead, making this a 2-cycle instruction.

Cycles: 1/2

CALL Subroutine Call

Syntax: CALL I

Operands: $0 \le I \le 0x3FF$

Operation: PC + 1 \rightarrow Top of Stack,

I → PC<9:0>

Status Affected: None

Description: Subroutine call. First, return address (PC+1) is pushed onto the stack. The 10-bit

immediate address is loaded into PC bits <9:0>.

Cycles: 2

CLRA Clear ACC

Syntax: CLRA
Operands: None
Operation: 00h → ACC;

 $1 \rightarrow Z$

Status Affected: Z

Description: The ACC register is cleared. Zero bit (Z) is set.

Cycles: 1

CLRR Clear R

Syntax: CLRR R
Operands: $0 \le R \le 0x6F$ Operation: $00h \rightarrow R$; $1 \rightarrow Z$

Status Affected: Z

Description: The contents of register 'R' are cleared and the Z bit is set.

CLRWDT Clear Watchdog Timer

Syntax: CLRWDT Operands: None

Operation: $00h \rightarrow WDT$;

1 → TO; 1 → PD

Status Affected: TO,PD

Description: The CLRWDT instruction resets the WDT. The status bits TO and PD will be set.

Cycles: 1

COMR Complement R

Syntax: COMR R, d Operands: $0 \le R \le 0x6F$ $d \in [0,1]$

Operation: $\overline{R} \rightarrow dest$

Status Affected: Z

Description: The contents of register 'R' are complemented. If 'd' is 0 the result is stored in the ACC

register. If 'd' is 1 the result is stored back in register 'R'.

Cycles: 1

DECR Decrement R

Syntax: DECR R, d Operands: $0 \le R \le 0x6F$ $d \in [0,1]$ Operation: $R - 1 \rightarrow dest$

Status Affected: Z

Description: Decrement of register 'R'. If 'd' is 0 the result is stored in the ACC register. If 'd' is 1 the

result is stored back in register 'R'.

Cycles: 1

DECRSZ Decrement R, Skip if 0

Syntax: DECRSZ R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: $R - 1 \rightarrow dest$; skip if result =0

Status Affected: None

Description: The contents of register 'R' are decrement. If 'd' is 0 the result is placed in the ACC register.

If 'd' is 1 the result is stored back in register 'R'.

If the result is 0, the next instruction, which is already fetched, is discarded and a NOP is

executed instead and making it a two-cycle instruction.

Cycles: 1/2

GOTO Unconditional Branch

Syntax: GOTO I
Operands: $0 \le I \le 0x3FF$ Operation: $I \to PC < 9:0 >$ Status Affected: None

Description: GOTO is an unconditional branch. The 10-bit immediate value is loaded into PC bits <9:0>.

INCR Increment R

Syntax: INCR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: R + 1 → dest

Status Affected: Z

Description: The contents of register 'R' are increment. If 'd' is 0 the result is placed in the ACC register.

If 'd' is 1 the result is stored back in register 'R'.

Cycles: 1

INCRSZ Increment R, Skip if 0

Syntax: INCRSZ R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: $R + 1 \rightarrow dest$, skip if result = 0

Status Affected: None

Description: The contents of register 'R' are increment. If 'd' is 0 the result is placed in the ACC register.

If 'd' is the result is stored back in register 'R'.

If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP

is executed instead and making it a two-cycle instruction.

Cycles: 1/2

IORAR OR ACC with R

Syntax: IORAR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: ACC or $R \rightarrow dest$

Status Affected: Z

Description: Inclusive OR the ACC register with register 'R'. If 'd' is 0 the result is placed in the ACC

register. If 'd' is 1 the result is placed back in register 'R'.

Cycles: 1

IORIA OR Immediate with ACC

Syntax: IORIA I
Operands: $0 \le I \le 0xFF$ Operation: ACC or $I \rightarrow ACC$

Status Affected: Z

Description: The contents of the ACC register are OR'ed with the 8-bit immediate 'I'. The result is placed

in the ACC register.

Cycles: 1

MOVAR Move ACC to R

Syntax: MOVAR R
Operands: $0 \le R \le 0x6F$ Operation: ACC \rightarrow R
Status Affected: None

Description: Move data from the ACC register to register 'R'.

MOVIA Move Immediate to ACC

Syntax: MOVIA I Operands: $0 \le I \le 0xFF$ Operation: $I \to ACC$ Status Affected: None

Description: The 8-bit immediate 'l' is loaded into the ACC register. The don't cares will assemble as 0s.

Cycles: 1

MOVR Move R

Syntax: MOVR R, d Operands: $0 \le R \le 0x6F$ $d \in [0,1]$

Operation: $R \rightarrow dest$

Status Affected: Z

Description: The contents of register 'R' is moved to destination 'd'. If 'd' is 0, destination is the ACC

register. If 'd' is 1, the destination is file register 'R'. 'd' is 1 is useful to test a file register

since status flag Z is affected.

Cycles: 1

NOP No Operation

Syntax: NOP
Operands: None
Operation: No oper

Operation: No operation Status Affected: None

Description: No operation.

Cycles: 1

RETFIE Return from Interrupt, Set 'GIE' Bit

Syntax: RETFIE Operands: None

Operation: Top of Stack \rightarrow PC

1 → GIE

Status Affected: None

Description: The program counter is loaded from the top of the stack (the return address). The 'GIE' bit

is set to 1. This is a two-cycle instruction.

Cycles: 2

RETIA Return with Immediate in ACC

Syntax: RETIA I

Operands: $0 \le I \le 0xFF$ Operation: $I \to ACC$;

Top of Stack → PC

Status Affected: None

Description: The ACC register is loaded with the 8-bit immediate 'l'. The program counter is loaded from

the top of the stack (the return address). This is a two-cycle instruction.

RETURN Return from Subroutine

Syntax: RETURN Operands: None

Operation: Top of Stack → PC

Status Affected: None

Description: The program counter is loaded from the top of the stack (the return address). This is a two-

cycle instruction.

Cycles: 2

RLR Rotate Left R through Carry

Syntax: RLR R, d Operands: $0 \le R \le 0x6F$

 $d\!\in [0,1]$

Operation: $R<7> \rightarrow C$;

R<6:0> \rightarrow dest<7:1>;

 $C \rightarrow dest<0>$

Status Affected: C

Description: The contents of register 'R' are rotated left one bit to the left through the Carry Flag. If 'd' is

0 the result is placed in the ACC register. If 'd' is 1 the result is stored back in register 'R'.

Cycles: 1

RRR Rotate Right R through Carry

Syntax: RRR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: $C \rightarrow \text{dest} < 7 >$;

R<7:1> \rightarrow dest<6:0>;

 $R<0> \rightarrow C$

Status Affected: C

Description: The contents of register 'R' are rotated one bit to the right through the Carry Flag. If 'd' is 0

the result is placed in the ACC register. If 'd' is 1 the result is placed back in register 'R'.

Cycles: 1

SLEEP Enter SLEEP Mode

Syntax: SLEEP
Operands: None
Operation: 00h → WDT;

1 → TO; 0 → PD

Status Affected: TO, PD

Description: Time-out status bit (\overline{TO}) is set. The power-down status bit (\overline{PD}) is cleared. The WDT is

cleared.

The processor is put into SLEEP mode.

SUBAR Subtract ACC from R

Syntax: SUBAR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: R - ACC → dest

Status Affected: C, DC, Z

Description: Subtract (2's complement method) the ACC register from register 'R'. If 'd' is 0 the result is

stored in the ACC register. If 'd' is 1 the result is stored back in register 'R'.

Cycles: 1

SWAPR Swap nibbles in R

Syntax: SWAPR R, d Operands: $0 \le R \le 0x6F$

 $d\!\in\![0,\!1]$

Operation: R<3:0> \rightarrow dest<7:4>;

R<7:4> → dest<3:0>

Status Affected: None

Description: The upper and lower nibbles of register 'R' are exchanged. If 'd' is 0 the result is placed in

ACC register. If 'd' is 1 the result in placed in register 'R'.

Cycles: 1

XORAR Exclusive OR ACC with R

Syntax: XORAR R, d Operands: $0 \le R \le 0x6F$

 $d \in [0,1]$

Operation: ACC xor $R \rightarrow dest$

Status Affected: Z

Description: Exclusive OR the contents of the ACC register with register 'R'. If 'd' is 0 the result is stored

in the ACC register. If 'd' is 1 the result is stored back in register 'R'.

Cycles: 1

XORIA Exclusive OR Immediate with ACC

Syntax: XORIA I
Operands: $0 \le I \le 0xFF$ Operation: ACC xor $I \to ACC$

Status Affected: Z

Description: The contents of the ACC register are XOR'ed with the 8-bit immediate 'I'. The result is

placed in the ACC register.

4.0 ABSOLUTE MAXIMUM RATINGS

Ambient Operating Temperature -40° C to $+85^{\circ}$ C Store Temperature -65° C to $+150^{\circ}$ C DC Supply Voltage (Vdd) -0.3V to +6.0V Input Voltage with respect to Ground (Vss) -0.3V to (Vdd +0.3)V

5.0 OPERATING CONDITIONS

DC Supply Voltage +2.2V to +5.5V Operating Temperature -40°C to $+85^{\circ}\text{C}$

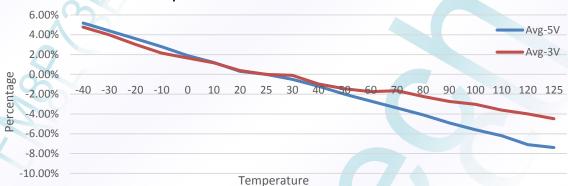
6.0 ELECTRICAL CHARACTERISTICS

6.1 ELECTRICAL CHARACTERISTICS of FM8P73B

Ta=25°C

Under Operating Conditions, at four clock instruction cycles and WDT & LVDT are disabled

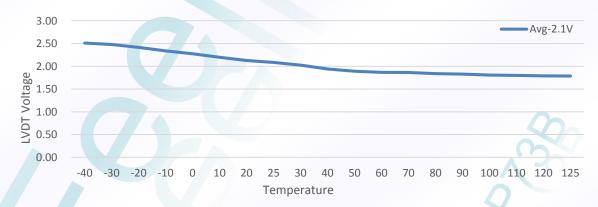
Sym Description Conditions Min. Typ. Max. Unit	ondor ope	stating conditions, at io	ul clock instruction cycles and WD1 & EV	D I die die	abica	1639		
First X1al oscillation range HF mode, Vdd=3V, Fcpu=Fosc/2 15 MHz	Sym	Description	Conditions	Min.	Тур.	Max.	Unit	
Firm	_	V'tal appillation rouge	HF mode, Vdd=5V, Fcpu=Fosc/2			20	N 41 1-	
Table Tab	FHF	X tal oscillation range	HF mode, Vdd=3V, Fcpu=Fosc/2			15	IVIHZ	
Timode, Vdd=3V, Fcpu=Fosc/2	T Vital a	What are illetion or one	XT mode, Vdd=5V, Fcpu=Fosc/2			10	N 41 1-	
Fire Xtal oscillation range LF mode, Vdd=3V, Fcpu=Fosc/2 1000 KHZ	FXT	X'tal oscillation range	XT mode, Vdd=3V, Fcpu=Fosc/2			10	IVIHZ	
Fired Fired Frode, Vidd=3V, Fcpu=Fosc/2 150	4	VII. 1	LF mode, Vdd=5V, Fcpu=Fosc/2		40	4000		
Ferc RC oscillation range ERC mode, Vdd=3V, Fcpu=Fosc/2 7 MHz Firsc IRC Calibration range HV mode, Vdd=3V -3 +3 +3 V _I H Input high voltage With schmitter 0.7Vdd Vdd V V _I L Input low voltage With schmitter Vss 0.2Vdd V I _{IL} Input Leakage Current I/O ports Vss 0.2Vdd V I _I L Input Leakage Current Vin = 5V, Vdd=5V 1 uA I _I D IO Drive Current VOH =4,5V, Vdd = 5V 14.5 mA I _I D IO Sink Current VOL =0.5V, Vdd = 5V 13.5 mA Reh Pull-high resister Input pin at Vss, vdd=5V 13.5 mA I _I D WDT current Vdd=5V 140 280 420 I _I D Vdd=5V 11 uA x0	FLF	X'tal oscillation range	LF mode, Vdd=3V, Fcpu=Fosc/2	7/ \		1000	KHZ	
Fire IRC Calibration range HV mode, Vdd=3V, Fcpu=Fosc/2 7	_		ERC mode, Vdd=5V, Fcpu=Fosc/2			15		
First IRC Calibration range LV mode, Vdd=3V -3	FERC	RC oscillation range	ERC mode, Vdd=3V, Fcpu=Fosc/2			7	MHZ	
LV mode, Vdd=3V	_		HV mode, Vdd=5V	-3		+3		
Vih	Firc	IRC Calibration range	LV mode, Vdd=3V	-3		+15	%	
RSTB pin 0.8Vdd Vdd Vdd With schmitter Vss 0.2Vdd V RSTB pin Vss 0.2Vdd V RSTB pin Vss 0.2Vdd V V V V V V V V V			With schmitter			l		
RSTB pin 0.8Vdd Vdd Vdd With schmitter Vss 0.2Vdd V RSTB pin Vss 0.2Vdd V RSTB pin Vss 0.2Vdd V V V V V V V V V	ViH	Input high voltage	I/O ports	0.7Vdd		Vdd	V	
Vil. Input low voltage I/O ports Vss 0.2Vdd V								
Input low voltage I/O ports RSTB pin Vss 0.2Vdd V						l		
RSTB pin Vss 0.2Vdd	VIL	V _{II} Input low voltage		Vss		0.2Vdd	V	
Input Leakage Current		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Input Leakage Current								
IO Drive Current	I _{IL}	Input Leakage Current					uA	
IO Drive Current VOH =4V, Vdd = 5V				/	7.5		mA	
IO IO Sink Current VOL = 0.5V, Vdd = 5V 13.5 mA	Іон	O Drive Current			_			
IO Sink Current VOL = 0.75 V, Vdd = 5 V					13.5			
RPH Pull-high resister Input pin at Vss, vdd=5V T0	lol	IO Sink Current					mA	
Note Pull-nigh resister Input pin at Vss, vdd=3V 140 280 420 KΩ	_			70		210		
WDT current Vdd=3V	RPH	Pull-high resister		140	280		ΚΩ	
Vdd=3V	l	M/DT accompany	Vdd=5V		11			
Volume	IWDT	WD1 current	Vdd=3V		2		uA	
LVDT LVDT current LVDT current LVDT = 3.5V, vdd=5V 2.5 LVDT = 2.3V, vdd=5V 3 LVDT = 2.3V, vdd=5V 0.6 LVDT = 2.0V, vdd=5V 2.5 LVDT = 2.0V, vdd=5V 0.5 LVDT = 2.0V, vdd=3V 0.5 LVDT = 3.5V 3.4 3.6 3.8 LVDT = 2.3V LVDT = 2.3V 2.2 2.4 2.6 V LVDT = 2.0V 1.9 2.1 2.3 VAD A/D input Voltage 0 Vdd V RAD Resolution 10 Bits DNL A/D Differential Non-Linear 2 LSB LS	Турт	WDT period	Vdd=3V		22		mS	
LVDT LVDT current LVDT = 2.3V, vdd=5V 0.6	IWDI	WB1 period					1110	
LVDT LVDT current LVDT = 2.3V, vdd=3V 0.6								
LVDT = 2.0V, vdd=5V 2.5	lu (DT	LVDT current					пΔ	
LVDT = 2.0V, vdd=3V 0.5	ILVDI	LVD1 current				0		
VLVDT						06		
LVDT = 2.0V 1.9 2.1 2.3				3.4		3.8	7	
V _{AD} A/D input Voltage 0 Vdd V R _{AD} Resolution 10 Bits DNL A/D Differential Non- Linear 2 LSB INI A/D Integral Non- Linear 5 LSB	V_{LVDT}	LVDT voltage			_		V	
Resolution 10 Bits DNL A/D Differential Non- Linear 2 LSB A/D Integral Non- 5 LSB	- X.	45	LVDT = 2.0V		2.1			
DNL A/D Differential Non- Linear 2 LSB A/D Integral Non- 5 LSB				0	0			
Linear A/D Integral Non- 5 LSB								
INI A/D Integral Non-	DNL				4	2	LSB	
	INII					E	LCD	
	IINL					5	LSB	



Sym	Description	Conditions	Min.	Тур.	Max.	Unit
	700	Vdd = 5V, Fcpu=Fosc/4		500		
I _{ADC}	A/D Operation Current	Vdd = 3V, Fcpu=Fosc/4		100		uA
T _{AD}	A/D clock period		-8			us
T _{ADC}	A/D Conversion Time			20		T _{AD}
T _{ADCS}	A/D Sampling Time			8		T _{AD}
		Sleep mode, Vdd=5V, WDT enable, LVDT off		11		
10	Dower down ourrent	Sleep mode, Vdd=5V, WDT disable, LVDT off			1	
ISB	I _{SB} Power down current	Sleep mode, Vdd=3V, WDT enable, LVDT off		2		uA
		Sleep mode, Vdd=3V, WDT disable, LVDT off	7		1	
I _{DD1}	Operating current	IRC mode, vdd=5V, 4 clock instruction		0.95		mA
I _{DD2}	Operating current	IRC mode, vdd=5V, 2 clock instruction		1.4		mA
I _{DD3}	Operating current	IRC mode, vdd=3V, 4 clock instruction		0.5		mA
I _{DD4}	Operating current	IRC mode, vdd=3V, 2 clock instruction		0.7		mA
		HF mode, vdd=5V, 4 clock instruction				
I_{DD5}	Operating current	20MHz		4		mA
		HF mode, vdd=5V, 2 clock instruction			I	
I _{DD6}	Operating current	20MHz		5		mA
	0 11	HF mode, vdd=3V, 4 clock instruction			I	
I _{DD7}	Operating current	20MHZ		1.6		mA
		XT mode, Vdd=5V, 4 clock instruction				
I_{DD8}	Operating current	10MHz		2.3		
		4MHz		1.2		mA
		XT mode, Vdd=5V, 2 clock instruction			I	
I_{DD9}	Operating current	10MHz		3.5		mA
		4MHz		1.6		
		XT mode, Vdd=3V, 4 clock instruction				
I_{DD10}	Operating current	10MHz		1		mA
		4MHz		0.5		
		XT mode, Vdd=3V, 2 clock instruction		1		
I_{DD11}	Operating current	10MHz		1.4		mA
		4MHz		0.7		
I_{DD}	Operating current	LF mode, Vdd=5V, 4 clock instruction				uA
טטי	Operating current	32KHz		32		u/
		LF mode, Vdd=5V, 2 clock instruction				
I _{DD12}	Operating current	32KHz		36		uA
		LF mode, Vdd=3V, 4 clock instruction			,450	
I _{DD13} Op	Operating current	32KHz		8		uA
I _{DD14} Ope		LF mode, Vdd=3V, 2 clock instruction				
	Operating current	32KHz		10		uA
		HF mode, Clock source = F _{OSC} x2		1 10		
V _{PWM} Oper			4.3			V
	Operating voltage	16MHz				
		8MHz	2.5			
		4MHz	2.0			

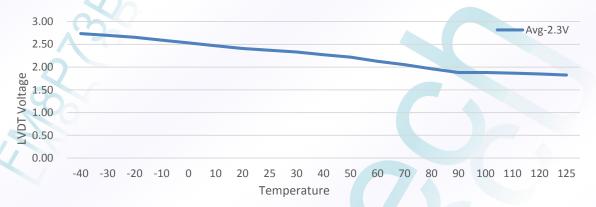
6.2 ELECTRICAL CHARACTERISTICS Charts of FM8P73B

6.2.1 Internal 4MHz RC vs. Temperature

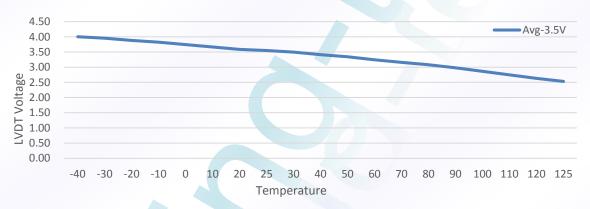

Note: Curves are for design reference only.

6.2.2 Internal 4MHz RC vs. Supply Voltage (Ta=25°C)

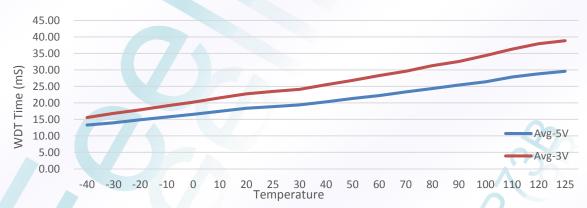
CAUTION: Less than 2.8V will exceed 3% limit. Note: Curves are for design reference only.


6.2.3 Low Voltage Detect (LVDT=2.1V) vs. Temperature

CAUTION: The LVDT 2.1V option can only support temperature range between -40~50℃ Note: Curves are for design reference only.



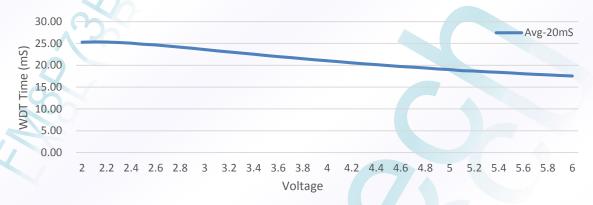
6.2.4 Low Voltage Detect (LVDT=2.3V) vs. Temperature


Note: Curves are for design reference only.

6.2.5 Low Voltage Detect (LVDT=3.5V) vs. Temperature

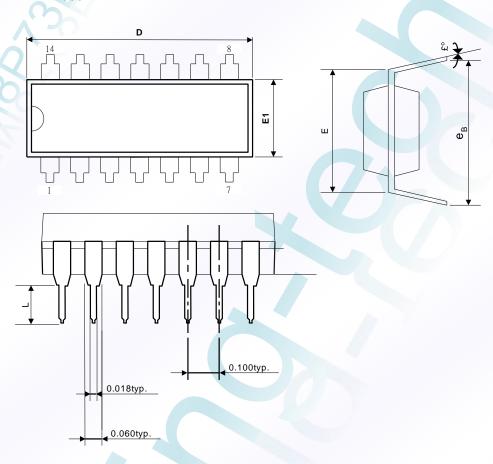
Note: Curves are for design reference only.

6.2.6 WDT 20mS Reset time vs. Temperature



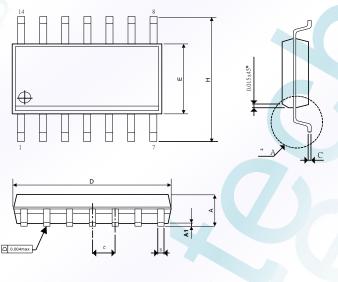
Note: Curves are for design reference only.

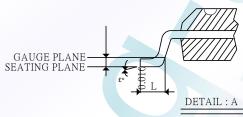
6.2.7 WDT 20mS Reset time vs. Supply Voltage (Ta=25℃)



Note: Curves are for design reference only.

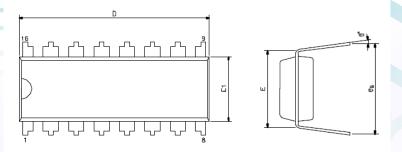
7.0 PACKAGE DIMENSION

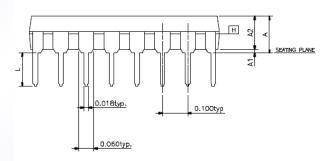

7.1 14-PIN PDIP 300mil



Cumbala	Dimension In Inches			
Symbols	Min	Nom	Max	
А	-	-	0.210	
A1	0.015	-	-	
A2	0.125	0.130	0.135	
D	0.735	0.750	0.775	
E	0.300 BSC.			
E1	0.245	0.250	0.255	
L	0.115	0.130	0.150	
eB	0.335	0.355	0.375	
θ°	0°	7°	15°	

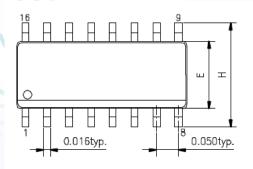
7.2 14-PIN SOP 150mil

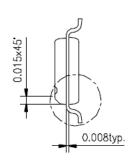


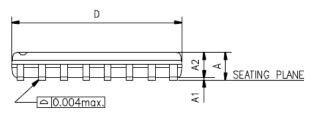


Symbole	Dimension In Inches			
Symbols	Min	Nom	Max	
Α	0.058	0.064	0.068	
A1	0.004	-	0.010	
В	0.013	0.016	0.020	
С	0.0075	0.008	0.0098	
D	0.336	0.341	0.344	
E	0.150	0.154	0.157	
е	-	0.050	-	
Н	0.228	0.236	0.244	
L	0.015	0.025	0.050	
θ°	0°	-	8°	

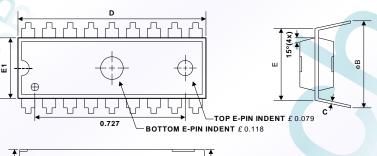
7.3 16-PIN PDIP 300mil

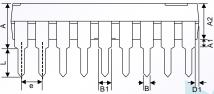




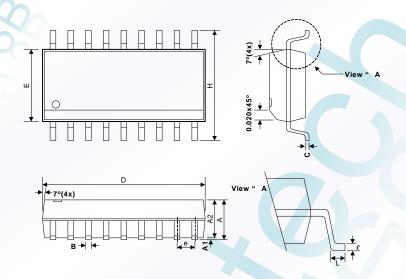

Cymah ala	Dimension In Inches			
Symbols	Min	Nom	Max	
Α	-	-	0.210	
A1	0.015	-	-	
A2	0.125	0.130	0.135	
D	0.735	0.755	0.775	
E		0.300 BSC		
E1	0.245	0.250	0.255	
_	0.115	0.130	0.150	
eB	0.335	0.355	0.375	
θ°	0°	7°	15°	

7.4 16-PIN SOP 150mil

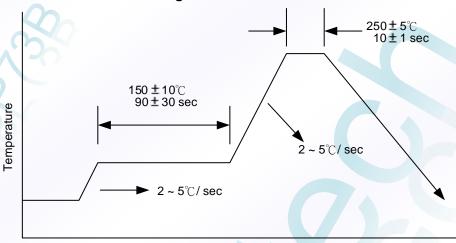




Cymbolo	Dimension In Inches		
Symbols	Min	Max	
Α	0.053	0.069	
A1	0.004	0.010	
A2	0.049	0.065	
D	0.386	0.394	
E	0.150	0.157	
Н	0.228	0.244	
	0.016	0.050	
θ°	0°	8°	


7.5 18-PIN PDIP 300mil

Cumph ala	Dimension In Inches			
Symbols	Min	Nom	Max	
Α	-	-	0.180	
A1	0.005	-	-	
A2	-	0.130	0.140	
В	0.014	0.018	0.022	
B1	0.050	0.060	0.070	
С	0.008	0.010	0.013	
D	0.894	0.904	0.910	
D1	0.017	0.022	0.027	
E	0.300	-	0.325	
E1	0.252	0.256	0.262	
е	-	0.100	-	
L	0.125	-	-	


7.6 18-PIN SOP 300mil

Symbolo	Dir	Dimension In Inches		
Symbols	Min	Nom	Max	
Α	0.093	0.098	0.104	
A1	0.04	-	0.012	
A2	+	0.091	-	
В	0.013	0.016	0.020	
С	0.007	0.009	0.011	
D	0.447	-	0.463	
E	0.291	0.295	0.299	
е	1	0.050	-	
Н	0.394	0.406	0.419	
L	0.015	0.032	0.050	
θ°	0°	-	8°	

8.0 PACKAGE IR Re-flow Soldering Curve

Time

9.0 ORDERING INFORMATION

OTP Type MCU	Package Type	Pin Count	Package Size
FM8P73BAP	PDIP	16	300 mil
FM8P73BAD	SOP	16	150 mil
FM8P73BBP	PDIP	14	300 mil
FM8P73BBD	SOP	14	150 mil
FM8P73BCP	PDIP	18	300 mil
FM8P73BCD	SOP	18	300 mil
FM8P73BDP	PDIP	16	300 mil
FM8P73BDD	SOP	16	150 mil