FEELING TECHNOLOGY

FM8PA76

EPROM -Based 8-Bit Microcontroller

Devices Included in this Data Sheet:

- FM8PA76AE : 20-pin EPROM device
 FM8PA76BE : 14-pin EPROM device
- FM8PA76EE : 24-pin EPROM device with VR pin
 - FM8PA76FE : 16-pin EPROM device with VR pin
- FM8PA76DE: 16-pin EPROM device

FEATURES

- Total 9 channel 12bit AD converter with ±2LSB resolution
- · All instructions are single cycle except for program branches which are two-cycles
- 16-bit wide instructions
- Configurable CPU clock per instruction cycle: Focs/4 and Fosc/2
- All EPROM area LGOTO instruction
- All EPROM area subroutine LCALL instruction
- 8-bit wide data path
- 8-level deep hardware stack
- 2K x 16 bits on chip EPROM
- 45x8 bits on chip special purpose registers and 128 x 8 bits on chip general purpose registers (SRAM)
- Operating speed: DC-20 MHz clock input, or DC-100 ns instruction cycle
- · Direct, indirect addressing modes for data accessing
- Five real time up count Timer/counter with 3-bit programmable prescaler
- TMR0: 16-bit Timer(up-counter)
- TMR1: 8-bit, PWM1(Period) & Timer
- TMR2: 8-bit, PWM1(Duty) & Timer
- TMR3: 8-bit, PWM2(Period) & Timer
- TMR4: 8-bit, PWM2(Duty) & Timer
- Built-in 3 levels Low Voltage Detector (LVDT) (2.2V/2.6V/3.7V) for Brown-out Reset (BOR)
- Power-up Reset Timer (PWRT)
- On chip Watchdog Timer (WDT) with internal oscillator for reliable operation and soft-ware watch-dog enable/disable control
- Three I/O ports IOA, IOB and IOC with independent direction control
- 17 Bi-direction I/O port (Programmable Pull-up enable in Input mode)
 One Input only port (IOB2/RSTB)
- Four kinds of interrupt source: 5 Timers/Counters, 8 external interrupt sources: IOA0~IOA7, Internal watchdog timer (i_WDT) wakeup, and A/D end of conversion
- Wake-up from SLEEP:
 - Port A (IOA0~IOA7) pin change wakeup
 - WDT overflow
 - i_WDT overflow
- Power saving SLEEP mode
- Programmable Code Protection
- Selectable oscillator options:
 - ERC: External Resistor/ Voltage Controlled Oscillator
 - XT: Crystal/Resonator Oscillator
 - HF: High Frequency Crystal/Resonator Oscillator
 - LF: Low Frequency Crystal Oscillator
 - IRC: Internal Resistor/Capacitor Oscillator
- Wide-operating voltage range:
 - EPROM : 2.2V to 5.5V

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

GENERAL DESCRIPTION

The FM8PA76 is a family of low-cost, high speed, high noise immunity, EPROM-based 8-bit CMOS microcontrollers. It employs a RISC architecture with 54 instructions. All instructions are single cycle except for program branches which take two cycles. The easy to use and easy to remember instruction set reduces development time significantly.

The FM8PA76 consists of Power-on Reset (POR), Brown-out Reset (BOR), Power-up Reset Timer (PWRT), Watchdog Timer, EPROM, SRAM, tri-state I/O port, I/O pull-high control, Power saving SLEEP mode, 5 real time programmable clock/counter, Interrupt, Wake-up from SLEEP mode, and Code Protection for EPROM products. There are eight oscillator configurations to be chosen from, including the power-saving LP (Low Power) oscillator and cost saving internal RC oscillator.

The FM8PA76 address 2K×16 of program memory.

The FM8PA76 can directly or indirectly address its register files and data memory. All special function registers including the program counter are mapped in the data memory.

The FM8PA76 provides total 9 channel 12bit AD converter with ±2LSB resolution.

BLOCK DIAGRAM

PIN CONNECTION

PDIP24, SOP24 (With VR PIN)

PDIP16, SOP16 (With VR PIN)

PIN DESCRIPTIONS

Name	I/O	Description
IOA0/AD0/INT0 ~ IOA7/AD7/INT7	I/O	 Bi-direction I/O port (programmable Pull-high in Input mode) Wake-up on pin change External interrupt input A/D converter input IOA2 is PWM2 output IOA6 is PWM1 output
IOB0/OSCI	I/O	 Bi-direction I/O port (programmable Pull-high in Input mode) Oscillator input (HF, XT, LF, ERC mode)
IOB1/OSCO	I/O	 Bi-direction I/O port (programmable Pull-high in Input mode) Oscillator output (HF, XT, LF, ERC mode)
IOB2/RSTB	Ι	 Input port, voltage on this pin must not exceed VDD. System clear (RESET) input. This pin is an active low RESET to the device
IOC1/TO~ IOC2/CLO2	I/O	 IOC1~IOC2 is Bi-direction I/O port (programmable Pull-high in Input mode) TO (PWM2 interrupt/2) shared with IOC1 Clock output 2 with prescaler shared with IOC2
IOC3	I/O	Bi-direction I/O port (programmable Pull-high in Input mode)
IOC4	I/O	Bi-direction I/O port (programmable Pull-high in Input mode)
IOC5/EXT_CLK ~ IOC6	I/O	 IOC5~IOC6 Bi-direction I/O port (programmable Pull-high in Input mode) EXT_CLK (External clock input) shared with IOC5
IOC7/AD8/CLO1	I/O	 Bi-direction I/O port (programmable Pull-high in Input mode) A/D converter input CLO1 (system clock out) shared with IOC7
VR	-	ADC module reference input, voltage on this pin must not exceed VDD.
VDD	-	Positive supply
VSS	-	Ground

Legend: I=input, O=output, I/O=input/output

Note: Please refer to 2.2 for detail IO type description

1.0 MEMORY ORGANIZATION

FM8PA76 memory is organized into program memory and data memory.

1.1 Program Memory Organization

The FM8PA76 have an 11-bit Program Counter capable of addressing a 2K×16 program memory space. The RESET vector for the FM8PA76 is at 000h.

The H/W interrupt vector is at 004h.

User can use "LCALL(far call)/LGOTO(far goto)" instructions to program user's code within entire program area.

FIGURE 1.1: Program Memory Map and STACK

FM8PA76

1.2 Data Memory Organization

Data memory is composed of 45 bytes Special Function Registers and 128 bytes General Purpose Registers. The data memory can be accessed either directly or indirectly through the FSR register.

TABLE 1.1: Registers File Map for FM8PA76

Address	Description
00h	
:	Special Purpose
:	Register
3EH	
40H	
:	General Purpose
:	Register
BFH	

TABLE 1.2: Special Purpose Registers Map

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
System									
00h (r/w)	INDF	Us	es contents	of FSR to	address d	ata memory	y (not a phy	sical regist	ter)
01h (r/w)	PCL				Low order	8 bits of PC	>		
02h (r/w)	PCH	-	-	-	-	-	High o	order 3 bits	of PC
03h (r/w)	STATUS	-	-	-	то	PD	Z	DC	С
04h (r/w)	FSR			Indirect	data memo	ory address	s pointer		
IO PAD & CO	ONTROL								
05h (r/w)	IOSTA	IOSTA7	IOSTA6	IOSTA5	IOSTA4	IOSTA3	IOSTA2	IOSTA1	IOSTA0
06h (r/w)	PORTA	IOA7	IOA6	IOA5	IOA4	IOA3	IOA2	IOA1	IOA0
07h (r/w)	IOSTB	-	-		<u> </u>	-	-	IOSTB1	IOSTB0
08h (r/w)	PORTB	-	-	-	-	-	IOB2	IOB1	IOB0
09h (r/w)	IOSTC	IOSTC7	IOSTC6	IOSTC5	IOSTC4	IOSTC3	IOSTC2	IOSTC1	-
0Ah (r/w)	PORTC	IOC7	IOC6	IOC5	IOC4	IOC3	IOC2	IOC1	-
Timer0:16-b	it timer								
10h (r/w)	TMR0_CTL	T0EN	TOLOAD	T0SO1	T0SO0	T0EDGE	T0PS2	T0PS1	T0PS0
11h (r/w)	TMR0L_LA			16-bit re;	al-time time	er/counter l	atch Low		
12h (r/w)	TMR0H_LA			16-bit rea	al-time time	er/counter la	atch High		
13h (r)	TMR0L_CNT			16-bit rea	al-time time	r/counter c	ount Low		
14h (r)	TMR0H_CNT			16-bit rea	al-time time	r/counter c	ount High		
Timer1: 8-bi	it, PWM1 (Per	riod) & Tim	ner						
15h (r/w)	TMR1_CTL1	T1EN	T1LOAD	T1SO1	T1SO0	T1EDGE	T1PS2	T1PS1	T1PS0
16h (r/w)	TMR1_CTL2	T12MOD	PWM1_INI	-	-	PWM1R3	PWM1R2	PWM1R1	PWM1R0
17h (r/w)	TMR1_LA			8-bit r	eal-time tin	ner/counter	Latch		
18h (r)	TMR2_CNT			8-bit re	eal-time tim	ner/counter	Count		
Timer2: 8-bi	it, PWM1 (Duf	ty) & Time	r						
19h (r/w)	TMR2_CTL1	T2EN	T2LOAD	T2SO1	T2SO0	T2EDGE	T2PS2	T2PS1	T2PS0
1Ah (r/w)	TMR2_LA			8-bit r	eal-time tin	ner/counter	Latch		
1Bh (r)	TMR2_CNT			8-bit r	eal-time tim	ner/counter	Count		

			1						-
Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
Timer3: 8-bi	t, PWM2 (Per	riod) & Tim	ner						
1Ch (r/w)	TMR3_CTL1	T3EN	T3LOAD	T3SO1	T3SO0	T3EDGE	T3PS2	T3PS1	T3PS0
1Dh (r/w)	TMR3_CTL2	T34MOD	PWM2_INI	-	-	PWM2R3	PWM2R2	PWM2R1	PWM2R0
1Eh (r/w)	TMR3_LA			8-bit re	eal-time tin	ner/counter	Latch		
1Fh (r)	TMR3_CNT			8-bit re	eal-time tim	ner/counter	Count		
Timer4: 8-bi	t, PWM2 (Dut	ty) & Time	r						
20h (r/w)	TMR4_CTL1	T4EN	T4LOAD	T4SO1	T4SO0	T4EDGE	T4PS2	T4PS1	T4PS0
21h (r/w)	TMR4_LA			8-bit re	eal-time tin	ner/counter	Latch		
22h (r/w)	TMR4_CNT			8-bit re	eal-time tim	ner/counter	Count		
IRQ									
25h (r/w)	INTEN	GIE	ADCIE	PAIE	T4IE	T3_PWM2IE	T2IE	T1_PWM1IE	T0IE
26h (r/w)	INTFLAG	-	ADCIF	PAIF	T4IF	T3_PWM2IF	T2IF	T1_PWM1IF	T0IF
ADC Contro									
29h (r/w)	AD_CTL1	ADCEN	-	MODE	-	CHSL3	CHSL2	CHSL1	CHSL0
2Ah (r/w)	AD_CTL2	CMP_D	-	-	-	-	CLKSL2	CLKSL1	CLKSL0
2Bh (r/w)	AD_CTL3	-	-	-	-	ANISL3	ANISL2	ANISL1	ANISL0
2Ch (r/w)	AD_DATL	D3	D2	D1	D0	-	-	-	-
2Dh (r/w)	AD_DATH	D11	D10	D9	D8	D7	D6	D5	D4
Others									
2Fh (r/w)	SYS_CLK	CLKS	-	-	-	-	-	IRCPD	ECLKPD
30h(r/w)	CLO_CTL	CLO2SO	CLO2PS1	CLO2PS0	-	EXT_CLK	CLO2_E	CLO1_E	TO_E
31h(r/w)	APHCON	PHA7	PHA6	PHA5	PHA4	PHA3	PHA2	PHA1	PHA0
32h(r/w)	BPHCON	-	-	-	-	-	-	PHB1	PHB0
33h(r/w)	CPHCON	PHC7	PHC6	PHC5	PHC4	PHC3	PHC2	PHC1	-
3Ah(r/w)	INT_PA	PA7IEN	PA6IEN	PA5IEN	PA4IEN	PA3IEN	PA2IEN	PA1IEN	PAOIEN
3Dh (r/w)	WDT_CTL	WDTEN	I_WDT	I_TWDT	-	-	WDTPS2	WDTPS1	WDTPS0
3Eh (r/w)	TB_BNK	-	-	-	-	-	BNK2	BNK1	BNK0

Legend: - = unimplemented, read as '0'.

2.0 FUNCTIONAL DESCRIPTIONS

2.1 Operational Registers

2.1.1 INDF (Indirect Addressing Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
00h (r/w)	INDF	Us	es contents	s of FSR to	address da	ata memory	/ (not a phy	sical regis	ter)

The INDF Register is not a physical register. Any instruction accessing the INDF register can actually access the register pointed by FSR Register. Reading the INDF register itself indirectly (FSR="0") will read 00h. Writing to the INDF register indirectly results in a no-operation (although status bits may be affected).

EXAMPLE 2.1: INDIRECT ADDRESSING

Register file 48 contains the value 10h Register file 49 contains the value 0Ah Load the value 48 into the FSR Register A read of the INDF Register will return the value of 10h Increment the value of the FSR Register by one (@FSR=49h) A read of the INDF register now will return the value of 0Ah.

FIGURE 2.1: Direct/Indirect Addressing for FM8PA76

2.1.2 PCL/PCH (Low/High Bytes of Program Counter) & Stack

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0	
01h (r/w)	PCL		Low order 8 bits of PC							
02h (r/w)	PCH	-	High order 3 bits of PC						of PC	

FM8PA76 devices have an 11-bits wide Program Counter (PC) and eight-level deep 11-bit hardware push/pop stack. This 11-bits Program Counter can be accessed and controlled by two registers, PCH and PCL. The low byte of PC control register is called the PCL. This register is readable and writable. The high byte of PC control register is called the PCH. This register contains the PC<10:8> bits also readable or writable.

The PCL and PCH registers normally indicate the value of Program Counter. But when interrupt occurrence and execution of RETF and RETFIE, the PCH data would not be update.

Any address within the program memory can be written into PCL and PCH registers. If the PCH register been changed and different from Program Counter., the value of PCH register updated only when execute LGOTO, LCALL, RETURN, or PCL value changed or increases from 0xff to 0x00. Once the value of PCL register changed, the program and Program Counter will jump to the location indicated by PCL and PCH register.

FIGURE 2.2: Loading of PC in Different Situations

Situation 1: PCH and PCL increase from FFH to 00H

Program Counter	PCH	PCL
1FEH	01h	FEh
1FFH	01h	FFh
200H	02h	00h

MOVIA	55h
NOP	
NOP	

Instruction Operands #include <8PA76.ash>

Situation 2: PCH/PCL direct load address

			Instruction #include <8	Operands 3PA76.ash>	
Program Counter	PCH	PCL			
1ACH	01H	ACH	MOVIA	02h	
1ADH	01H	ADH	MOVAR	PCH	
1AEH	02H	AEH	MOVIA	81h	
1AFH	02H	AFH	/ MOVAR	PCL	PC={(PCH):(PCL)}
					PC={(02H):(81H)} PC=281H
			NOP		
			,,,		
			ORG	0281h	
281H	02H	81H	L MOVIA	55h	
282H	02h	82h	NOP		

Situation 3: PCH/PCL mathematic operation

2.1.3 STATUS (Status Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
03h (r/w)	STATUS	-	-	-	то	PD	Z	DC	С

This register contains the arithmetic status of the ALU, and the RESET status. And the reset status bits \overline{TO} and \overline{PD} , are not writable.

- C: Carry/borrow bit.
 - ADDAR, ADDIA
 - = 1, Carry occurred.
 - = 0, No Carry occurred.
 - SUBAR, SUBIA
 - = 1, No borrow occurred.
 - = 0, Borrow occurred.
 - Note : A subtraction is executed by adding the two's complement of the second operand. For rotate (RRR, RLR) instructions, this bit is loaded with either the high or low order bit of the source register.

DC: Half carry/half borrow bit

- ADDAR, ADDIA
- = 1, Carry from the 4th low order bit of the result occurred.
- = 0, No Carry from the 4th low order bit of the result occurred. SUBAR, SUBIA
- = 1, No Borrow from the 4th low order bit of the result occurred.
- = 0, Borrow from the 4th low order bit of the result occurred.
- Z: Zero bit.
 - = 1, The result of a logic operation is zero.
 - = 0, The result of a logic operation is not zero.

PD : Power down flag bit.

- = 1, after power-up or by the CLRWDT instruction.
- = 0, by the SLEEP instruction.

$\overline{\tau o}$: Time overflow flag bit.

- = 1, after power-up or by the CLRWDT or SLEEP instruction
- = 0, a watch-dog time overflow occurred

то	PD	Description
0	0	WDT timer overflow from sleep mode
0	1	WDT timer overflow from normal mode
1	0	Set 'low" at RESETB from sleep mode
1	1	Power on reset
Unchanged	Unchanged	Set "low" at RESETB from normal mode

2.1.4 FSR (Indirect Data Memory Address Pointer)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
04h (r/w)	FSR			Indirect	data memo	ory address	s pointer		

Bit7:Bit0 : Select registers address in the indirect addressing mode. See 2.1.1 for detail description.

2.1.5 PORTA, PORTB & PORTC (Port Data Registers)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
05h (r/w)	IOSTA	IOSTA7	IOSTA6	IOSTA5	IOSTA4	IOSTA3	IOSTA2	IOSTA1	IOSTA0
06h (r/w)	PORTA	IOA7	IOA6	IOA5	IOA4	IOA3	IOA2	IOA1	IOA0
07h (r/w)	IOSTB	-	-	-	-	-	-	IOSTB1	IOSTB0
08h (r/w)	PORTB	-	-	-	-	-	IOB2*	IOB1	IOB0
09h (r/w)	IOSTC	IOSTC7	IOSTC6	IOSTC5	IOSTC4	IOSTC3	IOSTC2	IOSTC1	-
0Ah (r/w)	PORTC	IOC7	IOC6	IOC5	IOC4	IOC3	IOC2	IOC1	-

The registers (IOSTA, IOSTB, and IOSTC) are used to define the input or output of each port.

- **1** : Input.
- 0: Output.

Reading the port (PORTA, PORTB, and PORTC register) reads the status of the pins independent of the pin's input/output modes. Writing to these ports will write to the port data latch. Please refer to 2.2 for detail I/O Port description.

Note: IOB2 is read only.

2.1.6 TMR0 (16 bits Time Clock/Counter register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
10h (r/w)	TMR0_CTL	T0EN	TOLOAD	T0SO1	T0SO0	T0EDGE	T0PS2	T0PS1	T0PS0
11h (r/w)	TMR0L_LA			16-bit rea	al-time time	er/counter la	atch Low		
12h (r/w)	TMR0H_LA		16-bit real-time timer/counter latch High						
13h (r)	TMR0L_CNT		16-bit real-time timer/counter count Low						
14h (r)	TMR0H_CNT		16-bit real-time timer/counter count High						

The Timer0 is a 16-bit up count timer/counter which includes high byte (TMR0H_CNT), low byte (TMR0L_CNT) counter register, high byte (TMR0H_LA), and low byte (TMR0L_LA) latch register. Please refer to 2.3 for detail Timer description.

T0EN : TMR0 Enable/Disable

- = 0, TMR0 Disable.
 - = 1, TMR0 Enable.
- **TOLOAD** : Enable/Disable Latch Buffer automatically load to counter register while writing to latch register = 1, Enable TMR0 latch buffer automatically load to counter register while writing to latch register.
 - = 0, Disable TMR0 latch buffer automatically load to counter register while writing to latch register.
 Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T0SO1:T0SO0 : TMR0 clock source selection

Bit5	Bit4	TMP0 clock source
T0SO1	T0SO0	
0	0	EXT_CLK (IOC5)
0	1	Crystal mode OSCI or EXT_RC(In dual RC clock mode)
1	0	Internal 4MHz RC
1	1	Don't use

- **T0EDGE** : TMR0 clock edge selection. This bit works only when external clock source EXT_CLK (IOC5) selected. = 0, TMR0 increased while external clock $L \rightarrow H$.
 - = 1, TMR0 increased while external clock $H \rightarrow L$.

T0PS2:T0PS0 : TMR0 Prescaler selection

Bit2	Bit1	Bit0	TMP0 Proceedor rate
T0PS2	T0PS1	T0PS0	TWICU FIESCAIEI TALE
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.7 Timer1: 8-bit, PWM1 (Period) & Timer

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
15h (r/w)	TMR1_CTL1	T1EN	T1LOAD	T1SO1	T1SO0	T1EDGE	T1PS2	T1PS1	T1PS0
16h (r/w)	TMR1_CTL2	T12MOD	PWM1_INI	-	-	PWM1R3	PWM1R2	PWM1R1	PWM1R0
17h (r/w)	TMR1_LA		8-bit real-time timer/counter Latch						
18h (r)	TMR1_CNT		8-bit real-time timer/counter Count						

The Timer1 is an 8-bit up count timer/counter which includes counter register (TMR1_CNT), and latch register (TMR1_LA). Please refer to 2.3 for detail Timer description.

The Timer1 can also be combined with Timer2 as PWM1 period and duty and controlled by the register TMR1_CTL2. Please refer to 2.4 for detail PWM description.

2.1.7.1 Timer1 control (TMR1_CTL1)

- T1EN : TMR1 (PWM1) Enable/Disable
 - = 0, TMR1 (PWM1) Disable.
 - = 1, TMR1 (PWM1) Enable.
- **T1LOAD** : Enable/Disable Latch Buffer automatically load to counter register while writing to latch register = 1, Enable TMR1 latch buffer automatically load to counter register while writing to latch register.
 - 1, Enable TMR Flatch buffer automatically load to counter register while whilng to fatch register.
 - = 0, Disable TMR1 latch buffer automatically load to counter register while writing to latch register.
 Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T1SO1:T1SO0 : TMR1 clock source selection

Bit5	Bit4	TMP1 clock source
T1SO1	T1SO0	
0	0	EXT_CLK (IOC5)
0	1	Crystal mode OSCI or EXT_RC(In dual RC clock mode)
1	0	Internal 4MHz RC
1	1	Don't use

- **T1EDGE** : TMR1 clock edge selection. This bit works only when external clock source EXT_CLK (IOC5) selected. = 0, TMR1 increased while external clock $L \rightarrow H$.
 - = 1, TMR1 increased while external clock $H \rightarrow L$.

T1PS2:T1PS0 : TMR1 Prescaler selection

Bit2	Bit1	Bit0	TMP1 Brosseler rete
T1PS2	T1PS1	T1PS0	TWIRT Prescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.7.2 PWM1 control (TMR1_CTL2)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
16h (r/w)	TMR1_CTL2	T12MOD	PWM1_INI	-	-	PWM1R3	PWM1R2	PWM1R1	PWM1R0

T12MOD : TMR1 and TMR2 working mode (TMR / PWM1)

- = 0, TMR1 and TMR2 is Timer.
- = 1, TMR1 and TMR2 is PWM1.

PWM1_INI : Initial State of PWM1 output duty.

= 0, Set the initial state to H, change to L when TMR2 duty overflow.

= 1, Set the initial state to L, change to H when TMR2 duty overflow.

PWM1R3:PWM1R0: Interrupt Event Rate of PWM1.

"1:N" means interrupt occurred after "N" PWM1 pulses.

Bit3	Bit2	Bit1	Bit0	DW/M1 Interrupt rate
PWM1R3	PWM1R2	PWM1R1	PWM1R0	PWWIT Interrupt rate
0	0	0	0	1:1
0	0	0	1	1:2
0	0	1	0	1:3
•	•	•	•	
1	1	1	0	1:15
1	1	1	1	1:16

2.1.8 TMR2: 8-bit, PWM1 (Duty) & Timer

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
19h (r/w)	TMR2_CTL1	T2EN	T2LOAD	T2SO1	T2SO0	T2EDGE	T2PS2	T2PS1	T2PS0
1Ah (r/w)	TMR2_LA		8-bit real-time timer/counter Latch						
1Bh (r)	TMR2_CNT	8-bit real-time timer/counter Count							

The Timer2 is an 8-bit up count timer/counter which includes counter register (TMR2_CNT), and latch register (TMR2_LA). Please refer to 2.3 for detail Timer description.

T2EN : TMR2 Enable/Disable

= 0, TMR2 (PWM1) Disable.

= 1, TMR2 (PWM1) Enable.

T2LOAD : Enable/Disable Latch Buffer automatically load to counter register while writing to latch register
 = 1, Enable TMR2 latch buffer automatically load to counter register while writing to latch register.
 = 0, Disable TMR2 latch buffer automatically load to counter register while writing to latch register.
 Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T2SO1:T2SO0 : TMR2 clock source selection

Bit5	Bit4	
T2SO1	T2SO0	
0	0	EXT_CLK (IOC5)
0	1	Crystal mode OSCI or EXT_RC(In dual RC clock mode)
1	0	Internal 4MHz RC
1	1	Don't use

- **T2EDGE** : TMR2 clock edge selection. This bit works only when external clock source EXT_CLK (IOC5) selected. = 0, TMR2 increased while external clock $L \rightarrow H$.
 - = 1, TMR2 increased while external clock $H \rightarrow L$.

T2PS2:T2PS0 : TMR2 Prescaler selection

Bit2	Bit1	Bit0	TMP2 Proceedor rate
T2PS2	T2PS1	T2PS0	TIVINZ FIESCAIEI TALE
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.9 Timer3: 8-bit, PWM2 (Period) & Timer

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0		
1Ch (r/w)	TMR3_CTL1	T3EN	T3LOAD	T3SO1	T3SO0	T3EDGE	T3PS2	T3PS1	T3PS0		
1Dh (r/w)	TMR3_CTL2	T34MOD	PWM2_INI	-	-	PWM2R3	PWM2R2	PWM2R1	PWM2R0		
1Eh (r/w)	TMR3_LA		8-bit real-time timer/counter Latch								
1Fh (r)	TMR3_CNT		8-bit real-time timer/counter Count								

The Timer3 is an 8-bit up count timer/counter which includes counter register (TMR3_CNT), and latch register (TMR3_LA). Please refer to 2.3 for detail Timer description.

The Timer3 can also be combined with Timer4 as PWM2 period and duty and controlled by the register TMR2_CTL2. Please refer to 2.4 for detail PWM description.

2.1.9.1 Timer3 control (TMR3_CTL1)

T3EN : TMR3 (PWM2) Enable/Disable

- = 0, TMR3 (PWM2) Disable.
- = 1, TMR3 (PWM2) Enable.
- T3LOAD : Enable/Disable Latch Buffer automatically load to counter register while writing to latch register
 = 1, Enable TMR3 latch buffer automatically load to counter register while writing to latch register.
 = 0, Disable TMR3 latch buffer automatically load to counter register while writing to latch register.
 Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T3SO1:T3SO0 : TMR3 clock source selection

Bit5	Bit4	TMP2 clock source				
T3SO1	T3SO0	TMR3 CIOCK SOURCE				
0	0	EXT_CLK (IOC5)				
0	1	Crystal mode OSCI or EXT_RC(In dual RC clock mode)				
1	0	Internal 4MHz RC				
1	1	Don't use				

- **T3EDGE** : TMR3 clock edge selection. This bit works only when external clock source EXT_CLK (IOC5) selected. = 0, TMR3 increased while external clock $L \rightarrow H$.
 - = 1, TMR3 increased while external clock $H \rightarrow L$.

T3PS2:T3PS0 : TMR3 Prescaler selection

Bit2	Bit1	Bit0	TMD2 Dragoglar rate
T3PS2	T3PS1	T3PS0	TWRS Prescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.9.2 PWM2 control (TMR3_CTL2)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
1Dh (r/w)	TMR3_CTL2	T34MOD	PWM2_INI	-	-	PWM2R3	PWM2R2	PWM2R1	PWM2R0

T34MOD : TMR3 and TMR4 working mode (TMR/ PWM2)

- = 0, TMR3 and TMR4 is Timer.
- = 1, TMR3 and TMR4 is PWM2.

PWM2_INI : Initial State of PWM2 output duty

- = 0, Set the initial state to H, change to L when TMR4 duty overflow.
- = 1, Set the initial state to L, change to H when TMR4 duty overflow.

PWM2R3:PWM2R0 : Interrupt Event Rate of PWM2.

"1:N" means interrupt occurred after "N" PWM2 pulses.

Bit3	Bit2	Bit1	Bit0	DW/M2 Interrupt rate
PWM2R3	PWM2R2	PWM2R1	PWM2R0	PWWZ Interrupt rate
0	0	0	0	1:1
0	0	0	1	1:2
0	0	1	0	1:3
•	•	•	•	
1	1	1	0	1:15
1	1	1	1	1:16

2.1.10 TMR4: 8-bit, PWM2 (Duty) & Timer

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0		
20h (r/w)	TMR4_CTL1	T4EN	T4LOAD	T4SO1	T4SO0	T4EDGE	T4PS2	T4PS1	T4PS0		
21h (r/w)	TMR4_LA		8-bit real-time timer/counter Latch								
22h (r/w)	TMR4_CNT	8-bit real-time timer/counter Count									

The Timer4 is an 8-bit up count timer/counter which includes counter register (TMR4_CNT), and latch register (TMR4_LA). Please refer to 2.3 for detail Timer description.

T4EN : TMR4 Enable/Disable

- = 0, TMR4 Disable.
- = 1, TMR4 Enable.
- T4LOAD : Enable/Disable Latch Buffer automatically load to counter register while writing to latch register
 - = 1, Enable TMR4 latch buffer automatically load to counter register while writing to latch register.
 - = 0, Disable TMR4 latch buffer automatically load to counter register while writing to latch register.
 - Note: This bit is only affected after latch register written. When the timer underflows, the latch register data will automatically load into counter register.

T4SO1: T4SO0 : TMR4 clock source selection

Bit5	Bit4	
T4SO1	T4SO0	
0	0	EXT_CLK (IOC5)
0	1	Crystal mode OSCI or EXT_RC(In dual RC clock mode)
1	0	Internal 4MHz RC
1	1	Don't use

T4EDGE : TMR4 clock edge selection. This bit works only when external clock source EXT_CLK (IOC5) selected. = 0, TMR4 increased while external clock $L \rightarrow H$.

= 1, TMR4 increased while external clock $H \rightarrow L$.

T4PS2:T4PS0 : TMR4 Prescaler selection

Bit2	Bit1	Bit0	TMD4 Droppolar rate
T4PS2	T4PS1	T4PS0	TWR4 Prescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.1.11 INTEN (Interrupt Mask Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
25h (r/w)	INTEN	GIE	ADCIE	PAIE	T4IE	T3_PWM2IE	T2IE	T1_PWM1IE	T0IE

- GIE : Global interrupt enable bit.
 - = 0, Disable all interrupts.
 - = 1, Enable all un-masked interrupts.
 - Note : When an interrupt event occurred with the GIE bit and its corresponding interrupt enable bits are set, the GIE bit will be cleared by hardware to disable any further interrupts. The RETFIE instruction will exit the interrupt routine and set the GIE bit to re-enable interrupt.

ADCIE : ADC end of conversion (EOC) interrupt enable

- = 0, Disable interrupt.
- = 1, Enable interrupt.
- PAIE : PORTA interrupt enable
 - = 0, Disable interrupt.
 - = 1, Enable interrupt.
- T4IE : Timer4 overflow interrupt enable bit.
 - = 0, Disable interrupt.
 - = 1, Enable interrupt.
- T3_PWM2IE : Timer3/PWM2 overflow interrupt enable bit.
 - = 0, Disable interrupt.
 - = 1, Enable interrupt.

- **T2IE** : Timer2 overflow interrupt enable bit.
 - = 0, Disable interrupt.
 - = 1, Enable interrupt.
- T1_PWM1IE : Timer1/PWM1 overflow interrupt enable bit.
 - = 0, Disable interrupt.
 - = 1, Enable interrupt.
- TOIE : Timer0 overflow interrupt enable bit.
 - = 0, Disable interrupt.
 - = 1, Enable interrupt.

2.1.12 INTFLAG (Interrupt Status Register)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
26h (r/w)	INTFLAG	-	ADCIF	PAIF	T4IF	T3_PWM2IF	T2IF	T1_PWM1IF	T0IF

BIT7 : Not used. Read as "0".

- ADCIF : ADC end of conversion interrupt flag. Set after ADC end of conversion, and reset by software.
- **PAIF**: PortA IOA0~7 Interrupt flag. Set when pin changed on selected IOA by register INT_PA (3Ah), and reset by software.
- **T4IF** : TMR4 interrupt flag. Set when TMR4 overflows, and reset by software.
- **T3_PWM2IF**: TMR3 interrupt or PWM2 interrupt flag. Set when TMR3 overflows or PWM2 pulse counts to selected interrupt rate, and reset by software.
- T2IF : TMR2 interrupt flag. Set when TMR2 overflows, and reset by software.
- T1_PWM1IF : TMR1 interrupt or PWM1 interrupt flag. Set when TMR1 overflows or PWM1 pulse counts to selected interrupt rate, and reset by software.

TOIF : TMR0 interrupt flag. Set when TMR0 overflows, and reset by software.

2.1.13 AD_CTL1 (AD converter Control Register1)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
29h (r/w)	AD_CTL1	ADCEN	-	MODE	-	CHSL3	CHSL2	CHSL1	CHSL0

ADCEN : ADC enable/disable setting

= 1, Enable.

Note : This bit should be set by software and would be reset by hardware after the ADC end of conversion.

^{= 0,} Disable.

MODE : ADC operation mode selection

= 0, The ADC is operated in Analog to Digital Conversion mode.

= 1, The ADC is operated in Comparator mode.

Note : When the ADC in comparator mode, the converted data of input voltage would be compared to AD_DAT. The compared result would be stored in the bit7 of AD_CTL2 register.

CHSL3:CHSL0 : ADC input channel select

Bit3 CHSL3	Bit2 CHSL2	Bit1 CHSL1	Bit0 CHSL0	Input channel
0	0	0	0	Channel 0, IOA0 pin
0	0	0	1	Channel 1, IOA1 pin
0	0	1	0	Channel 2, IOA2 pin
0	0	1	1	Channel 3, IOA3 pin
0	1	0	0	Channel 4, IOA4 pin
0	1	0	1	Channel 5, IOA5 pin
0	1	1	0	Channel 6, IOA6 pin
0	1	1	1	Channel 7, IOA7 pin
1	0	0	0	Channel 8, IOC7 pin

2.1.14 AD_CTL2 (AD converter Control Register2)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
2Ah (r/w)	AD_CTL2	CMP_D	-	-	-	-	CLKSL2	CLKSL1	CLKSL0

CMP_D : Comparison result of ADC in Comparator Mode

= 0, Input Voltage < AD_DAT.

= 1, Input Voltage \geq AD_DAT.

CLKSL2:CLKSL0 : Conversion Clock Source Selection

Bit2	Bit1	Bit0				
CKSL2	CKSL1	CKSL0	COnversion Clock			
0	0	0	System clock /2			
0	0	1	System clock /8			
0	1	0	System clock /32			
0	1	1	System clock /128			
1	0	0	System clock /64			
1	0	1	System clock /16			
1	1	0	System clock /4			
1	1	1	Don't use			

Note : This clock is used to control the conversion precision and speed. The precision will be dropped off if faster conversion rate been used. The lowest conversion rate would be recommended in order to acquire most accurate data.

2.1.15 AD_CTL3 (AD converter Control Register3)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
2Bh (r/w)	AD_CTL3	-	-	-	-	ANISL3	ANISL2	ANISL1	ANISL0

ANISL3:ANISL0 : Analog input selection

Bit3	Bit2	Bit1	Bit0	Analog Input Selection
ANISL3	ANISL2	ANISL1	ANISL0	Analog Input Selection
0	0	0	0	All the ports are digital input
0	0	0	1	AN0
0	0	1	0	AN1
0	0	1		AN2
0	1	0	0	AN3
0		0		AN4
0	1	1	0	AN5
0		1		AN6
1	0	0	0	AN7
1	0	0		AN8

Note : To minimize power consumption, all the analog I/O pins should be setup properly before entering sleep mode.

2.1.16 AD_DAT (AD conversion data high and low)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
2Ch (r/w)	AD_DATL	D3	D2	D1	D0	-	-	-	-
2Dh (r/w)	AD_DATH	D11	D10	D9	D8	D7	D6	D5	D4

The AD_DAT registers contain the Analog to Digital converted data in the AD conversion mode. When operated in comparator mode, the data written to those registers would be used to compare to the converted data of input voltage.

2.1.17 SYS_CLK (System Clock Control)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
2Fh (r/w)	SYS_CLK	CLKS	-	-	-	-	-	IRCPD	ECLKPD

The FM8PA76 could be operated either dual or single clock system selected by configuration words. Please refer to 2.12 for detail configuration selection description. This register is used to control the switch between different system clocks and power-down function of those clocks.

CLKS : System Clock Selection (only valid in dual clock mode)

- = 0, System Clock is Internal 4MHz RC.
- = 1, System Clock is External OSC/RC.

IRCPD: Internal 4MHz RC Power down Control (only valid in dual clock mode)

- = 0, Internal 4MHz RC Power ON.
- = 1, Internal 4MHz RC Power Down.

Note : Make sure the system clock been switch to external OSC/RC before power down internal RC.

ECLKPD : External clock (OSC/RC) Power down Control (only valid in dual clock mode)

= 0, External OSC/RC Power ON.

= 1, External OSC/RC Power Down.

Note : Make sure the system clock been switch to internal 4MHz RC before power down external OSC/RC.

2.1.18 CLO_CTL (Clock output Control)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
30h(r/w)	CLO_CTL	CLO2SO	CLO2PS1	CLO2PS0	-	EXT_CLK	CLO2_E	CLO1_E	TO_E

The FM8PA76 provides three kinds of clock output. The first one (CLO1) is the system clock output. The 2nd one (CLO2) is the selected internal or external clock output with prescaler function. The 3rd one (TO) is the TMR3 output with the frequency of TMR3 divided by 2.

EXAMPLE 2.2: When setting the following register

CLO2SO = 0	; Internal 4MHz RC for CLO2
CLO2PS1:CLO2PS1 = <10>	; CLO2 Prescaler 1:8
CLO2_E = 1	; IOC2 set to CLO2 output
IOSTC2 = 0	; Set IOC2 to output

There will be a clock output at IOC2 with frequency 500 KHz.

CLO2SO : System Clock output 2 source select

- = 0, Clock Output 2 source is internal 4MHz RC (default).
- = 1, Clock Output 2 source is external OSC/RC.

CLO2PS1:CLO2PS0 : Clock Output 2 prescaler setting

Bit6	Bit5	Clask Output 2 procedur
CLO2PS1	CLO2PS0	Clock Output 2 prescaler
0	0	1:2
0	1	1:4
1	0	1:8
1	1	1:16

- **EXT_CLK** : EXT_CLK (IOC5) function selection
 - = 0, IOC5 is normal I/O.
 - = 1, IOC5 is external clock input of timer.
- **CLO2_E** : Clock Output 2 (IOC2) function selection = 0, IOC2 is normal I/O.
 - = 1, IOC2 is Clock Output 2.
- CLO1_E : Clock Output (IOC7) function selection
 - = 0, IOC7 is normal I/O.
 - = 1, IOC7 is System Clock Output.

TO_E : TMR3 output (IOC1) Enable/Disable

= 0, IOC1 is normal I/O.

= 1, IOC1 is the frequency of TMR3 (PWM2) divided by 2.

2.1.19 APHCON/ BPHCON/ CPHCON (Port* Pull-high Control)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
31h(r/w)	APHCON	PHA7	PHA6	PHA5	PHA4	PHA3	PHA2	PHA1	PHA0
32h(r/w)	BPHCON	-	-	-	-	-	-	PHB1	PHB0
33h(r/w)	CPHCON	PHC7	PHC6	PHC5	PHC4	PHC3	PHC2	PHC1	-

Those registers are used to setup pull-high resistor enable/disable of each IO pins.

= 0, Pull-high resistor disable.

= 1, Pull-high resistor enable.

2.1.20 INT_PA (IOA Interrupt/ wakeup control)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
3Ah(r/w)	INT_PA	PA7IEN	PA6IEN	PA5IEN	PA4IEN	PA3IEN	PA2IEN	PA1IEN	PA0IEN

This register is used to enable/disable the interrupt/wakeup function of Port A. Please refer to 2.7.1 for detail description of External Interrupt and Wake up function.

= 0, selected IO interrupt/wakeup disable.

= 1, selected IO interrupt/wakeup enable.

2.1.21 WDT_CTL (Watchdog Timer Control)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
3Dh (r/w)	WDT_CTL	WDTEN	I_WDT	I_TWDT	-	-	WDTPS2	WDTPS1	WDTPS0

The FM8PA76 builds in a watchdog timer with two different modes, normal watchdog reset and internal watchdog wakeup. The watchdog timer is controlled by this register (WDT_CTL). Please refer to 2.5 for detail Watchdog Timer description.

WDTEN : Watchdog Timer Enable/ Disable.

- = 0, WDT disable.
- = 1, WDT Enable.
- I_WDT : Internal Watchdog Wakeup mode selection.
 - = 0, Internal Watchdog Wakeup Disable.
 - = 1, Internal Watchdog Wakeup Enable.
- $\label{eq:limit} \textbf{I}_{\textbf{TWDT}}: \text{ Watchdog Timer Stable time required when operating in } \textbf{I}_{\textbf{WDT}} \text{ mode.}$
 - = 0, 5ms (default).
 - = 1, 1.25ms.

WDTPS2:WDTPS0 : Watchdog timer prescaler setting

Bit2	Bit1	Bit0	WDT Brosseler rete
WDTPS2	WDTPS1	WDTPS0	WDT Flescalel Tale
0	0	0	20mS
0	0	1	40mS
0	1	0	80mS
0	1	1	160mS
1	0	0	320mS
1	0	1	640mS
1	1	0	1.28S
1	1	1	2.56S

2.1.22 TAB_BNK (Table Look-up function)

Address	Name	B7	B6	B5	B4	B3	B2	B1	B0
3Eh (r/w)	TB_BNK	-	-	-	-	-	BNK2	BNK1	BNK0

The FM8PA76 provides a table look-up function and the bank selection of ROM data is controlled by this register. Please refer to 2.9 for detail operation of look-up table function.

BNK2:BNK0 : Page selection of Look-up table

Bit2	Bit1	Bit0	BANK solost
BNK2	BNK1	BNK0	DANK Select
0	0	0	000 XXXX XXXX Table location
0	0	1	001 XXXX XXXX Table location
0	1	0	010 XXXX XXXX Table location
1	1	1	111 XXXX XXXX Table location

2.2 I/O Ports

There are totally 16 bi-directional tri-state I/O ports and one (IOB2) input only. All I/O pins (IOA<7:0>, IOB<1:0> and IOC<7:1>) have specified data direction control registers (IOSTA, IOSTB, IOSTC) which can configure these pins as output or input.

All the IO pins can also enable or disable a weak internal pull-high by setting APHCON, BPHCON, and CPHCON. This weak pull-high will be automatically turned off when the pin is configured as an output pin.

VR pin is reference voltage input pin of the ADC module, this pin does not have I/O function. The voltage on this pin must not exceed VDD, otherwise it will cause the pin burned down.

FIGURE 2.3: Block Diagram of I/O Pins

GENERIC IO BLOCK DIAGRAM:

Pull-high/ADC/OSC control is not shown in this figure

IOB2/RSTB BLOCK DIAGRAM:

Voltage on this pin must not exceed VDD.

VR BLOCK DIAGRAM:

2.3 Timer/Event Counter (TMR0, TMR1, TMR2, TMR3, TMR4)

The FM8PA76 contains one 16-bit and four 8-bit up count Timers/counters. All these timers have auto reload function, TMR1/TMR2 and TMR3/TMR4 can be combined to perform PWM function

FIGURE 2.4: Block Diagram of the Timer

*TMR0 is 16 bits counter, the others is 8 bits counter.

2.3.1 Clock Source

There are 3 clock sources could be selected by each timer separately.

2.3.1.1 EXT_CLK (IOC5)

The event counter mode would be activated when the source of EXT_CLK (IOC5) used. At this mode, the rising/ falling edge of the event could also be selected separately.

2.3.1.2 External OSC or RC

Each timer can select external crystal or external RC as clock source when the external clock is available.

2.3.1.3 Internal 4MHz RC

Each timer can select internal 4MHz RC as clock source.

2.3.2 Prescaler

Each timer contains a 3-bits prescaler which can scale the timer or counter from 1:1 to 1:128.

Bit2	Bit1	Bit0	Prescaler rate
0	0	0	1:1
0	0	1	1:2
0	1	0	1:4
0	1	1	1:8
1	0	0	1:16
1	0	1	1:32
1	1	0	1:64
1	1	1	1:128

2.4 Pulse Width Modulation (PWM)

FM8PA76 provides two PWM output shared with TMR1/2 and TMR3/4. When PWM1 or PWM2 selected, TMR1/TMR3 becomes the period of PWM1/PWM2 and TMR2/TMR4 will be the duty of PWM1/PWM2. If the system frequency is 4MHz, the range of PWM period could be from 0.5us to 8,192ms. Please refer to the sample program and timing diagram below.

Note : When PWM duty or period needed to be changed, the auto-load control bit of the timer (TxLOAD) must be cleared before new data writes to latch register. If this bit still set, the data written to latch register would be load into counter register immediately and cause PWM output anomaly.

EXAMPLE 2.3: PWM1 Setting

//Set PWM1 P	eriod	
MOVIA	01100001b	// Set Source: 4MHz IRC Prescaler 1:2
MOVAR	TMR1_CTL1	
MOVIA	10000011b	
MOVAR	TMR1_CTL2	// Set PWM Interrupt Rate 1:4
MOVIA	0xC1	
MOVAR	TMR1_LA	// Set Period (0xC1 >> 0xFF)
//Set PWM1 I	Duty	
MOVIA	01010010b	// Set Source: Ext OSC(1) Prescaler 1:4
MOVAR	TMR2_CTL1	
MOVIA	0xC8	
MOVAR	TMR2_LA	// Set Duty (0xC8 >> 0xFF)
BSR	TMR1_CTL1,7	// Start PWM1
MOVIA	0x82	
MOVAR	INTEN	<pre>// enable INTEN & PWM1 interrupt</pre>
CLRR	INTFLAG	// clear interrupt flag

Note 1: This example demonstrates the PWM applied in dual clock system. The PWM duty (Timer2) must be smaller then PWM period (Timer1). In this example, the frequency of external OSC is approximately 16MHz.

FIGURE 2.5: PWM Output Waveform

FIGURE 2.6: PWM Interrupt Waveform

PWM Interrupt Rate PWMxR<3:0>= 0011 (1:4)

2.5 Watch Dog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. So the WDT will still run even if the clock on the OSCI and OSCO pins is turned off, such as in SLEEP mode. The WDT can be disabled by clearing the control bit WDTEN (WDT_CTL <7>) to "0".

The WDT has a typical time-out period of 20 ms (without prescaler). This period of this timer may be variant slightly because of temperature, voltage, and process variation. If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT controlled by the WDT_CTL register <2:0>. Thus, the longest time-out period is approximately 2.56 seconds.

The CLRWDT instruction clears the WDT and prevents it from timing out and generating a device reset. The SLEEP instruction also resets the WDT. This gives the maximum SLEEP time before a WDT Wake-up Reset.

There are two type of watchdog timer mode could be selected by I_WDT (WDT_CTL <6>). When I_WDT bit disable, normal watchdog timer reset is selected. During normal operation or in SLEEP mode, a WDT time-out will cause the device reset and the \overline{TO} bit (STATUS<4>) will be cleared.

If I_WDT bit enabled, the internal watchdog timer wakeup will be used. The system wakeups from sleep, then jumps into interrupt vector with external interrupt request PAIF (INTFLAG<5>) and continues from next instruction instead of triggering a reset event. There is a stabilization time required for internal watchdog wakeup could be selected by I_TWDT (WDT_CTL<5>). The default value of this stabilization timer is 5ms.

EXAMPLE 2.4: Typical Watchdog Reset

2.6 Reset

FM8PA76 devices may be RESET in one of the following ways:

- 1. Power-on Reset (POR)
- 2. Brown-out Reset (BOR)
- 3. RSTB Pin Reset
- 4. WDT time-out Reset

Some registers are not affected in any RESET condition. Their status is unknown on Power-on Reset and unchanged in any other RESET. Most other registers are reset to a "reset state" on Power-on Reset, RSTB or WDT Reset.

A Power-on RESET pulse is generated on-chip when Vdd rise is detected. To use this feature, the user merely ties the RSTB pin to Vdd.

On-chip Low Voltage Detector (LVDT) places the device into reset when Vdd is below a fixed voltage. This ensures that the device does not continue program execution outside the valid operation Vdd range. Brown-out RESET is typically used in AC line or heavy loads switched applications.

A RSTB or WDT Wake-up from SLEEP also results in a device RESET, and not a continuation of operation before SLEEP.

The \overline{TO} and \overline{PD} bits (STATUS<4:3>) are set or cleared depending on the different reset conditions.

2.6.1 Power-up Reset Timer(PWRT)

The Power-up Reset Timer provides a nominal 20ms delay after Power-on Reset (POR), Brown-out Reset (BOR), RSTB Reset or WDT time-out Reset. The device is kept in reset state as long as the PWRT is active. The PWDT delay will vary from device to device due to Vdd, temperature, and process variation.

FIGURE 2.7: Reset Timing

LVDT off/RSTB Enable

Note: TPWRT = 20 ms

FIGURE 2.8: Simplified Block Diagram of on-chip Reset Circuit

TABLE 2.1: Reset Conditions for Operational Registers

Address	Name	Power-on Reset Brown-out Reset RSTB Reset	WDT Reset
N/A	Accumulator	XXXX XXXX	นนนน นนนน
00H	INDF	XXXX XXXX	uuuu uuuu
01H	PCL	0000 0000	0000 0000
02H	PCH	000	000
03H	STATUS	0001 1xxx	0001 1xxx
04H	FSR	XXXX XXXX	นนนน นนนน
05H	IOSTA	1111 1111	1111 1111
06H	PORTA	****	սսսս սսսս
07H	IOSTB	xxxx xx11	xxxx xx11
08H	PORTB	XXXX XXXX	xxxx xxuu
09H	IOSTC	1111 111x	1111 111x
0AH	PORTC	XXXX XXXX	uuuu uuux
10H	TMR0_CTL	0000 0000	0000 0000
11H	TMR0L_LA (Don't write FF)	0000 0000	0000 0000
12H	TMR0H_LA (Don't write FF)	0000 0000	0000 0000
13H	TMR0L_CNT (Read only)	0000 0000	0000 0000
14H	TMR0H_CNT (Read only)	0000 0000	0000 0000
15H	TMR1_CTL1	0000 0000	0000 0000
16H	TMR1_CTL2	0000 0000	0000 0000
17H	TMR1_LA (Don't write FF)	0000 0000	0000 0000
18H	TMR1_CNT (Read only)	0000 0000	0000 0000
19H	TMR2_CTL1	0000 0000	0000 0000
1AH	TMR2_LA (Don't write FF)	0000 0000	0000 0000
1BH	TMR2_CNT (Read only)	0000 0000	0000 0000
1CH	TMR3_CTL1	0000 0000	0000 0000
1DH	TMR3_CTL2	0000 0000	0000 0000
1EH	TMR3_LA (Don't write FF)	0000 0000	0000 0000
1FH	TMR3_CNT (Read only)	0000 0000	0000 0000
20H	TMR4_CTL1	0000 0000	0000 0000
21H	TMR4_LA (Don't write FF)	0000 0000	0000 0000
22H	TMR4_CNT (Read only)	0000 0000	0000 0000
25H	INTEN	0000 0000	0000 0000
26H	INTFLAG	x000 0000	x000 0000

Address	Name	Power-on Reset Brown-out Reset RSTB Reset	WDT Reset
29H	AD_CTL1	0x0x 0000	0x0x 0000
2AH	AD_CTL2	0xxx x000	0xxx x000
2BH	AD_CTL3	xxxx 0000	xxxx 0000
2CH	AD_DATL	0000 xxxx	0000 xxxx
2DH	AD_DATH	0000 0000	0000 0000
2FH	SYS_CLK	0xxx xx00	0xxx xx00
30H	CLO_CTL	000x 0000	000x 0000
31H	APHCON	0000 0000	0000 0000
32H	BPHCON	xxxx xx00	xxxx xx00
33H	CPHCON	0000 000x	0000 000x
3AH	INT_PA	0000 0000	0000 0000
3DH	WDT_CTL	100x x111	100x x111
3EH	TB_BNK	xxxx x000	xxxx x000

Legend: x = unknown, - = unimplemented and read "0", u = unchanged

2.7 Interrupt

The FM8PA76 has three kinds of interrupt sources:

- 1. 8 External IOA<0:7> pin changed interrupt
- 2. 5 Timers / Counters overflow interrupt
- 3. an end of AD conversion interrupt

INTFLAG is the interrupt flag register that recodes the interrupt requests to the relative flags.

A global interrupt enable bit, GIE (INTEN<7>), enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be enabled/ disabled through their corresponding enable bits in INTEN register regardless of the status of the GIE bit.

When an interrupt event occur with the GIE bit and its corresponding interrupt enable bit are all set, the GIE bit will be cleared by hardware to disable any further interrupts, and the next instruction will be fetched from address 004h. The interrupt flag bits must be cleared by software before re-enabling GIE bit to avoid recursive interrupts.

The RETFIE instruction exits the interrupt routine and set the GIE bit to re-enable interrupt.

The RETF instruction exits the interrupt routine and does NOT set the GIE bit.

The flag bit in INTFLAG register is set by interrupt event regardless of the status of its mask bit.

2.7.1 PORTA<0:7> External Interrupt and Wakeup Function

The external interrupt on PORTA<0:7> are selected by INT_PA<0:7> and PAIE (INTEN<5>). When the device is in normal mode and the specified IO status changed, the interrupt event will be triggered and the program will jump to 004h.

When the device is in sleep mode, those interrupts can also be used as an external wakeup signal. The device will restart system clock and the program will jump to 004h after startup timer timeout.

EXAMPLE 2.6: External IOA<0> pin change interrupt

EXAMPLE 2.7: External IOA<0> pin change Wakeup/ Interrupt

2.8 Analog to Digital Converter (ADC)

This analog to digital converter has 9 channels 12bits (10+2) resolution. The ADC is controlled by three control register, ADC_CTL1, ADC_CTL2, and ADC_CTL2. The FM8PA76 provides two operation modes, AD conversion mode and comparator mode. The operation mode can be selected by MODE (AD_CTL1<5>). In AD conversion mode, the AD_DATL and AD_DATH register shows the AD conversion result. If the comparator selected, the data written to those two registers will be compared to the converted data of input voltage. The result will be shown in CMP_D (AD_CTL2<7>).

EXAMPLE 2.8: Analog to Digital Conversion (Channel0 AD conversion)

BTRSC	AD_CTL1,7	Make Sure as ADC is pressed
BCR	۵-۱ INTFLAG.6	, Make Sure no ADC is processing
MOVIA	0x00	
MOVAR	AD_CTL1	; Select ADC Channel 0 conversion
MOVIA	0x03	
MOVAR	AD_CIL2	; Set AD conversion rate: System clock /128
MOVIA	0x01	
MOVAR	AD_CTL3	; Set AN0 analog input
BSR	AD_CTL1,7	; ADC start
BTRSS	6, INTFLAG	
lgoto	\$-1	; Wait AD end of conversion
MOVR	AD_DATH,0	; Read ADC high byte data
MOVR	AD_DATL,0	; Read ADC Low byte data

2.9 Look-Up Table Function

...

The Look-up Table function is built-in to access the data table within entire ROM area. The TB_BNK register is used to address the high byte of the location of required ROM. The instructions TABL and TABH are used to read low byte and high byte of the addressed ROM. The result of instructions will be stored at ACC register. Please refer to the following example for detail.

	 Movia Movar Movia	03H 0x5B 0x07	; Save 03H to register 0x5B (low bit address)
	MOVAR TABL	TB_BNK 0x5B	; Save 0x07 value to TAB_BNK (high bit address) ; Read Low Byte 0x0703 ROM Data, and saved it to A register. : ACC = 0xAA
	TABH	0x5B	; Read High Byte 0x0703 ROM Data, and saved it to A register. ; ACC = 0x55
(address) 0700H 0701H 0702H 0703H	ORG DW DW DW DW	0700H 1122H 3344H 6677H 55AAH	; Program start from 0700H of ROM ; Store ROM Table Start from 0700H

2.10 Hexadecimal Convert to Decimal (HCD)

Decimal format is another number format for FM8PA76. When the content of the data memory has been assigned as decimal format, it is necessary to convert the results to decimal format after the execution of ALU instructions. When the decimal converting operation is processing, all of the operand data (including the contents of the data memory (RAM), accumulator (ACC), immediate data, and look-up table) should be in the decimal format, or the results of conversion will be incorrect.

Instruction DAA can convert the ACC data from hexadecimal to decimal format after any addition operation and restored to ACC. The conversion operation is illustrated in example 2.9.

EXAMPLE 2.9: DAA CONVERSION

MOVIA	90h	;Set immediate data = decimal format number "90" (ACC \leftarrow 90h)
MOVAR	40h	;Load immediate data "90" to data memory address 40H
MOVIA	10h	;Set immediate data = decimal format number "10" (ACC < 10h)
ADDAR	40h, 0	;Contents of the data memory address 40H and ACC are binary-added
		;the result loads to the ACC (ACC \leftarrow A0h, C \leftarrow 0)
DAA	40h, 0	;Convert the content of ACC to decimal format, and restored to ACC
		;The result in the ACC is "00" and the carry bit C is "1". This represents the
		;decimal number "100"

Instruction DAS can convert the ACC data from hexadecimal to decimal format after any subtraction operation and restored to ACC. The conversion operation is illustrated in example 2.10.

EXAMPLE 2.10: DAS CONVERSION

MOVIA	10h	;Set immediate data = decimal format number "10" (ACC < 10h)
MOVAR	40h	;Load immediate data "10" to data memory address 40H
MOVIA	20h	;Set immediate data = decimal format number "20" (ACC \leftarrow 20h)
SUBAR	40h, 0	;Contents of the data memory address 40H and ACC are binary-subtracted
		;the result loads to the ACC (ACC \leftarrow F0h, C \leftarrow 0)
DAS	40h, 0	;Convert the content of ACC to decimal format, and restored to ACC
		;The result in the ACC is "90" and the carry bit C is "0". This represents the
		;decimal number " -10"

2.11 Oscillator Configurations

FM8PA76 can be operated in eight different combinations of oscillator modes. Users can program configuration words (Fosc) to select the appropriate modes. The eight different system clock modes are combination of the following oscillators:

- LF: Low Frequency Crystal Oscillator
- XT: Crystal/Resonator Oscillator
- HF: High Frequency Crystal/Resonator Oscillator
- ERC: External Resistor/ Voltage Controlled Oscillator
- IRC: Internal Resistor/Capacitor Oscillator

In LF, XT, or HF modes, a crystal or ceramic resonator in connected to the OSCI and OSCO pins to establish oscillation. When in LF, XT, or HF modes, the devices can have an external clock source drive the OSCI pin. The ERC device option offers additional cost savings for timing insensitive applications. The RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext), the operating temperature, and the process parameter.

The IRC option offers largest cost savings for timing insensitive applications.

FIGURE 2.9: HF, XT or LF Oscillator Modes (Crystal Operation or Ceramic Resonator)

FIGURE 2.10: HF, XT or LF Oscillator Modes (External Clock Input Operation)

FIGURE 2.11: ERC (External Resistor Controlled) Oscillator Mode

The typical oscillator frequency vs. external resistor is as following table When Cext = 0.01uf (103)

	5V		3V
Rext	Frequency	Rext	Frequency
4.3M	32 KHZ	3.6M	32 KHZ
220K	500 KHZ	189K	500 KHZ
107K	1.0 MHZ	100K	1.0 MHZ
56K	2.0 MHZ	53K	2.0 MHZ
30K	4.0 MHZ	28K	4.0 MHZ
16K	8.0 MHZ	15K	8.0 MHZ
11K	12.0 MHZ	11K	12.0 MHZ

Note: Values are provided for design reference only.

FIGURE 2.12: IRC Oscillator Mode (Internal R, Internal C Oscillator)

2.12 Configuration Words

TABLE 2.2: Configuration Words

Name	Description
	Oscillator Selection Bits
	→ IRC(4MHz) mode (default)
	→ HF crystal & IRC(4MHz) mode
	→ XT crystal & IRC(4MHz) mode
Fosc	→ LF crystal & IRC(4MHz) mode
	→ ERC & IRC(4MHz) mode
	→ HF crystal mode
	→ XT crystal mode
	→ LF crystal mode
	Watchdog Timer Enable Bit
WDTEN	→ WDT enabled (default)
	→ WDT disabled
	Low Voltage Detector Selection Bit
	\rightarrow LVDT = 2.6V (default)
LVDT	\rightarrow LVDT = 2.2V
	→ OFF
	\rightarrow LVDT = 3.7V
	IOB2/RSTB Pin Selection Bit
RSTBIN	→ RSTB pin is selected (default)
	→ IOB2 pin is selected
	Instruction Period Selection Bits
CPU_S	→ four oscillator periods (4T) (default)
	→ two oscillator periods (2T)
CAL	Calibration Selection Bits for IRC Mode
	Code Protection Bit
PROTECT	→ NO, EPROM code protection off (default)
	→ YES, EPROM code protection on

TABLE 2.3: Selection of IOB1/OSCO Pin

Mode of oscillation	IOB1/OSCO Pin Selection
IRC	IOB1
ERC	OSCO
HF, XT, LF	OSCO

TABLE 2.4: Selection of IOB0/OSCI Pin

Mode of oscillation	IOB0/OSCI Pin Selection
IRC	IOB0
ERC	OSCI
HF, XT, LF	OSCI

3.0 INSTRUCTION SET

Mnemonic, Operands		Description	Operation	Cycles	Status Affected
BCR	R. bit	Clear bit in R	0 → R 	1	-
BSR	R. bit	Set bit in R	1 → R 	1	-
BTRSC	R. bit	Test bit in R. Skip if Clear	Skip if R = 0	1/2 ⁽¹⁾	-
BTRSS	R, bit	Test bit in R, Skip if Set	Skip if R = 1	1/2 ⁽¹⁾	-
NOP		No Operation	No operation	1	-
CLRWDT		Clear Watchdog Timer	00h → WDT, 00h → WDT prescaler	1	TO, PD
SLEEP		Go into power-down mode	00h → WDT, 00h → WDT prescaler	1	TO , PD
TABL	R	Read low byte ROM table to (acc) ROM table address={TB_BNK,index of R }	ACC=ROM{BANK index: R }[7:0]	2	-
ТАВН	R	Read high byte ROM table to (acc) ROM table address={TB_BNK,index of R }	ACC=ROM{BANK index : R }[15:8]	2	-
DAA	R, d	Adjust data format of register from HEX to DEC after any addition operation	$R(hex) \rightarrow dest (dec)$	1	С
DAS	R, d	Adjust data format of register from HEX to DEC after any subtraction operation	$R(hex) \rightarrow dest (dec)$	1	С
RETURN		Return from subroutine	Top of Stack \rightarrow PC	2	-
RETFIE		Return from interrupt, set GIE bit	Top of Stack \rightarrow PC, 1 \rightarrow GIE	2	-
RETF		Return from interrupt	Top of Stack \rightarrow PC,	2	-
CLRA		Clear ACC	00h → ACC	1	Z
CLRR	R	Clear R	00h → R	1	Z
MOVAR	R	Move ACC to R	ACC → R	1	-
MOVR	R, d	Move R	R → dest	1	Z
MOV2	R, d	Move R	R → dest	1	-
DECR	R, d	Decrement R	R - 1 → dest	1	Z
DECRSZ	R, d	Decrement R, Skip if 0	R - 1 → dest, Skip if result = 0	1/2 ⁽¹⁾	-
INCR	R, d	Increment R	R + 1 → dest	1	Z
INCRSZ	R, d	Increment R, Skip if 0	R + 1 → dest, Skip if result = 0	1/2 ⁽¹⁾	-
ADDAR	R, d	Add ACC and R	R + ACC → dest	1	C, DC, Z
SUBAR	R, d	Subtract ACC from R	R - ACC → dest	1	C, DC, Z
ADCAR	R, d	Add ACC and R with Carry	$R + ACC + C \rightarrow dest$	1	C, DC, Z
SBCAR	R, d	Subtract ACC from R with Carry	$R + \overline{ACC} + C \rightarrow dest$	1	C, DC, Z
ANDAR	R, d	AND ACC with R	ACC and R \rightarrow dest	1	Z
IORAR	R, d	Inclusive OR ACC with R	ACC or R \rightarrow dest	1	Z
XORAR	R, d	Exclusive OR ACC with R	R xor ACC \rightarrow dest	1	Z
COMR	R, d	Complement R	$\bar{R} \rightarrow dest$	1	Z
RL	R, d	Rotate left R	R<6:0> → dest<7:1>, R<7>→ dest<0>	1	-
RLR	R, d	Rotate left R through Carry	R<7> → C, R<6:0> → dest<7:1>, C → dest<0>	1	С

Mnemo Operan	nic, Ids	Description	Operation	Cycles	Status Affected
RL0	R, d	Rotate left R through 0	R<6:0> → dest<7:1>, 0 → dest<0>	1	-
RL1	R, d	Rotate left R through 1	R<6:0> → dest<7:1>, 1 → dest<0>	1	-
RR	R, d	Rotate right R	R<7:1> → dest<6:0>, R<0> → dest<7>	1	-
RRR	R, d	Rotate right R through Carry	C → dest<7>, R<7:1> → dest<6:0>, R<0> → C	1	С
RR0	R, d	Rotate right R with 0	0 → dest<7>, R<7:1> → dest<6:0>,	1	-
RR1	R, d	Rotate right R with 1	1 → dest<7>, R<7:1> → dest<6:0>,	1	-
SWAPR	R, d	Swap R	R<3:0> → dest<7:4>, R<7:4> → dest<3:0>	1	-
MOVIA	I	Move Immediate to ACC	I → ACC	1	-
ADDIA	I	Add ACC and Immediate	I + ACC → ACC	1	C, DC, Z
SUBIA	I	Subtract ACC from Immediate	$I - ACC \rightarrow ACC$	1	C, DC, Z
ANDIA	I	AND Immediate with ACC	ACC and I \rightarrow ACC	1	Z
IORIA	I	OR Immediate with ACC	ACC or I → ACC	1	Z
XORIA	I	Exclusive OR Immediate to ACC	ACC xor I → ACC	1	Z
RETIA	I	Return, place Immediate in ACC	$I \rightarrow ACC$, Top of Stack $\rightarrow PC$	2	-
LCALL	I	Call subroutine	PC + 1 → Top of Stack, I → PC<10:0> PC<10:8> → PCH<2:0>	2	-
LGOTO	I	Unconditional branch	I → PC<10:0> PC<10:8> → PCH<2:0>	2	-
TMSZA		If (ACC) =0, skip next instruction	Skip if ACC = 0	1/2 ⁽¹⁾	-
TMSZR	R	If (R) =0, skip next instruction	Skip if R = 0	1/2 ⁽¹⁾	-
TMSNZR	R	If (R) \neq 0, skip next instruction	Skip if $R \neq 0$	1/2 ⁽¹⁾	-
тмсомр	R	If (acc) =(R), skip next instruction	Skip if (acc) =(R)	1/2 ⁽¹⁾	-
тмсомрв	R	If (acc) \neq (R), skip next instruction	Skip if (acc) \neq (R)	1/2 ⁽¹⁾	-

Note: 1.2 cycles for skip, else 1 cycle.

- bit : Bit address within an 8-bit register R 2.
 - R : Register address (00h to BFh) I : Immediate data

 - ACC : Accumulator
 - d : Destination select;
 - =0 (store result in ACC)
 - =1 (store result in file register R)
 - dest : Destination
 - PC : Program Counter
 - PCH : High Byte register of Program Counter
 - WDT : Watchdog Timer Counter
 - GIE : Global interrupt enable bit
 - $\overline{\tau o}$: Time-out bit
 - **PD** : Power-down bit
 - C : Carry bit DC : Digital carry bit
 - Z : Zero bit
- 3. CLRR STATUS will set Z bit and leave the remaining bits unchanged.

ADCAR	Add ACC and R with Carry
Syntax:	ADCAR R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$R + ACC + C \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add the contents of the ACC register and register 'R' with Carry. If 'd' is 0 the result is stored
·	in the ACC register. If 'd' is '1' the result is stored back in register 'R'.
Cycles:	1
ADDAR	Add ACC and R
Syntax:	ADDAR R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	ACC + R \rightarrow dest
Status Affected:	C, DC, Z
Description:	Add the contents of the ACC register and register 'R'. If 'd' is 0 the result is stored in the ACC register. If 'd' is '1' the result is stored back in register 'R'.
Cycles:	1
ADDIA	Add ACC and Immediate
Svntax:	ADDIA I
Operands:	0<1<0xFF
Operation:	$ACC + I \rightarrow ACC$
Status Affected:	C. DC. Z
Description:	Add the contents of the ACC register with the 8-bit immediate 'l'. The result is placed in the
	ACC register.
Cycles:	1
ANDAR	AND ACC and R
Syntax:	ANDAR R, d
Operands:	$0 \le R \le 0 xBF$
	$d \in [0,1]$
Operation:	ACC and $R \rightarrow dest$
Status Affected:	Ζ
Description:	The contents of the ACC register are AND'ed with register 'R'. If 'd' is 0 the result is stored in the ACC register. If 'd' is '1' the result is stored back in register 'R'.
Cycles:	1
ANDIA	AND Immediate with ACC
Syntax:	ANDIA I
Operands:	0≤l≤0xFF
Operation:	ACC AND I \rightarrow ACC
Status Affected:	Z
Description:	The contents of the ACC register are AND'ed with the 8-bit immediate 'I'. The result is placed
•	in the ACC register.
Cycles:	1

BCR	Clear Bit in R
Syntax:	BCF R, b
Operands:	0≤R≤0xBF
,	$0 \le b \le 7$
Operation:	$0 \rightarrow \text{R}$
Status Affected:	None
Description:	Clear bit 'b' in register 'R'.
Cycles:	1
,	
BSR	Set Bit in R
Syntax:	BSR R, b
Operands:	$0 \le R \le 0xBF$
	0≤b≤7
Operation:	$1 \rightarrow \text{R$
Status Affected:	None
Description:	Set bit 'b' in register 'R'.
Cycles:	1
BTRSC	Test Bit in R, Skip if Clear
Syntax:	BTRSC R, b
Operands:	$0 \le R \le 0xBF$
	$0 \le b \le 7$
Operation:	Skip if $R < b > = 0$
Status Affected:	None
Description:	If bit 'b' in register 'R' is 0 then the next instruction is skipped.
	If bit 'b' is 0 then next instruction fetched during the current instruction execution is discarded,
	and a NOP is executed instead making this a 2-cycle instruction.
Cycles:	1/2
BTRSS	Test Bit in R, Skip if Set
Syntax:	BTRSS R, b
Operands:	$0 \le R \le 0xBF$
	$0 \le b \le 7$
Operation:	Skip if $R < b > = 1$
Status Affected:	None
Description:	If bit 'b' in register 'R' is '1' then the next instruction is skipped.
	If bit 'b' is '1', then the next instruction fetched during the current instruction execution, is
	discarded and a NOP is executed instead, making this a 2-cycle instruction.
Cycles:	1/2
CLRA	Clear ACC
Syntax:	CLRA
Operands:	None
Operation:	$00h \rightarrow ACC;$
	$1 \rightarrow Z$
Status Affected:	Z
Description:	The ACC register is cleared. Zero bit (Z) is set.
Cycles:	1

CLRR	Clear R
Syntax:	CLRR R
Operands:	$0 \le R \le 0xBF$
Operation:	$00h \rightarrow R;$
I.	1 → Z
Status Affected:	Z
Description:	The contents of register 'R' are cleared and the Z bit is set.
Cvcles:	1
-)	
CLRWDT	Clear Watchdog Timer
Syntax:	CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT;$
	$1 \rightarrow \overline{TO};$
	$1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	The CLRWDT instruction resets the WDT. The status bits \overline{TO} and \overline{PD} will be set.
Cycles:	1
0.0115	
COMR	Complement R
Syntax:	COMR R, d
Operands:	$0 \le R \le 0 \times BF$
A	$d \in [0,1]$
Operation:	R → dest
Status Affected:	
Description:	The contents of register 'R' are complemented. If 'd' is 0 the result is stored in the ACC register. If 'd' is 1 the result is stored back in register 'R'.
Cycles:	1
DAA	Adjust ACC's data format from HEX to DEC
Syntax:	DAA R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$R(hex) \rightarrow dest(dec)$
Status Affected:	C
Description:	Convert the register data from hexadecimal to decimal format after any addition operation. If
	'd' is 0 the result is stored in the ACC register. If 'd' is 1 the result is stored back in register 'R'.
Cycles:	1
DAS	Adjust ACC's data format from HEX to DEC
Syntax:	DAS R, d
Operands:	0≤R≤0xBF
	d∈ [0,1]
Operation:	$R(hex) \rightarrow dest(dec)$
Status Affected:	C
Description:	Convert the register data from hexadecimal to decimal format after any subtraction operation.
·	If 'd' is 0 the result is stored in the ACC register. If 'd' is 1 the result is stored back in register 'R'.
Cycles:	1

DECR	Decrement R
Syntax:	DECR R, d
Operands:	0≤R≤0xBF
- F	$d \in [0,1]$
Operation:	$R = 1 \rightarrow \text{dest}$
Status Affected	7
Description:	\sim
Description.	is stared back in register (D)
Cualaat	
Cycles.	
DECRSZ	Decrement R, Skip if 0
Syntax:	DECRSZ R, d
Operands:	$0 \le R \le 0xBF$
·	d∈ [0,1]
Operation:	$R - 1 \rightarrow dest$: skip if result =0
Status Affected	None
Description:	The contents of register ' \mathbf{R} ' are decrement. If 'd' is 0 the result is placed in the ACC register.
Description.	If 'd' is 1 the result is stored back in register 'P'
	If the result is 0, the part instruction, which is already fatabad, is discorded and a NOP is
	If the result is 0, the next instruction, which is already retched, is discarded and a NOP is
A 1	executed instead and making it a two-cycle instruction.
Cycles:	1/2
LCALL	Subroutine Call
Syntax:	LCALL I
Operands:	0≤1≤0x7FF
Operation:	PC + 1 \rightarrow Top of Stack,
	I → PC<10:0>
	PC<10:8> → PCH<2:0>
Status Affected:	None
Description:	Subroutine call First return address (PC+1) is pushed onto the stack. The 11-bit immediate
Booonprion	address is loaded into PC hits <10:0>
Cycles	2
Cyclob.	2
LGOTO	Unconditional Branch
Syntax:	LGOTO I
Operands:	0≤1≤0x7FF
Operation:	I → PC<10:0>
	PC<10:8> → PCH<2:0>
Status Affected:	None
Description:	LGOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits
	<10:0>.
Cvcles:	2
-)	
INCR	Increment R
Syntax:	INCR R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$R + 1 \rightarrow dest$
Status Affected:	Z
Description:	The contents of register 'R' are increment. If 'd' is 0 the result is placed in the ACC register. If
ı	'd' is 1 the result is stored back in register 'R'.
Cycles:	1
2	

INCRSZ	Increment R, Skip if 0		
Syntax:	INCRSZ R, d		
Operands:	$0 \le R \le 0xBF$		
	d∈ [0,1]		
Operation:	$R + 1 \rightarrow dest$, skip if result = 0		
Status Affected:	None		
Description:	The contents of register 'R' are increment. If 'd' is 0 the result is placed in the ACC register. If		
·	'd' is the result is stored back in register 'R'.		
	If the result is 0, then the next instruction, which is already fetched, is discarded and a NOP is		
	executed instead and making it a two-cycle instruction.		
Cycles:	1/2		
IORAR	OR ACC with R		
Svntax:	IORAR R.d		
Operands:	$0 \le R \le 0xBF$		
-1	d∈ [0.1]		
Operation:	ACC or $R \rightarrow dest$		
Status Affected:	Z		
Description:	Inclusive OR the ACC register with register 'R'. If 'd' is 0 the result is placed in the ACC		
·	register. If 'd' is 1 the result is placed back in register 'R'.		
Cycles:	1		
10014			
	OR Immediate with ACC		
Syntax:			
Operands:			
Operation:	ACC or $I \rightarrow ACC$		
Status Affected:			
Description:	The contents of the ACC register are OR'ed with the 8-bit immediate 'I'. The result is placed in the ACC register.		
Cycles:	1		
MOVAR	Move ACC to R		
Syntax:	MOVAR R		
Operands:	$0 \le R \le 0xBF$		
Operation:	$ACC \rightarrow R$		
Status Affected:	None		
Description:	Move data from the ACC register to register 'R'.		
Cycles:	1		
MOVIA	Move Immediate to ACC		
Syntax:	MOVIA I		
Operands:	0≤I≤0xFF		
Operation:	I → ACC		
Status Affected:	None		
Description:	The 8-bit immediate 'I' is loaded into the ACC register. The don't cares will assemble as 0s.		
Cycles:	1		

MOVR	Move R
Syntax:	MOVR R, d
Operands:	$0 \le R \le 0xBF$
-1	d∈ [0.1]
Operation:	$R \rightarrow dest$
Status Affected:	Z
Description:	The contents of register 'R' is moved to destination 'd'. If 'd' is 0, destination is the ACC
	register. If 'd' is 1, the destination is file register 'R'. 'd' is 1 is useful to test a file register since
	status flag Z is affected.
Cycles:	1
MOV2	Move R
Syntax:	MOV2 R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$R \rightarrow dest$
Status Affected:	None
Description:	The contents of register 'R' is moved to destination 'd'. If 'd' is 0, destination is the ACC
	register. If 'd' is 1, the destination is file register 'R'. The zero status flag <z> is not affected.</z>
Cycles:	1
NOP	No Operation
Syntax:	NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Cycles:	1
RETF	Return from Interrupt
Syntax:	RETF
Operands:	None
Operation:	Top of Stack \rightarrow PC
Status Affected:	None
Description:	The program counter is loaded from the top of the stack (the return address). The 'GIE' bit
·	would NOT be set to 1. This is a two-cycle instruction.
Cycles:	2
RETFIE	Return from Interrupt. Set 'GIE' Bit
Svntax:	RETFIE
Operands:	None
Operation:	Top of Stack \rightarrow PC
- P • • • • • • •	1 → GIE
Status Affected	None
Description:	The program counter is loaded from the top of the stack (the return address). The 'GIF' hit is
	set to 1. This is a two-cycle instruction.
Cvcles:	2
-,	-

RETIA	Return with Immediate in ACC		
Syntax:	RETIA I		
Operands:	0≤l≤0xFF		
Operation:	$I \rightarrow ACC;$		
I	Top of Stack \rightarrow PC		
Status Affected:	None		
Description:	The ACC register is loaded with the 8-bit immediate 'l'. The program counter is loaded from		
2000.101.011	the top of the stack (the return address). This is a two-cycle instruction		
Cycles:	2		
-)	-		
RETURN	Return from Subroutine		
Syntax:	RETURN		
Operands:	None		
Operation:	Top of Stack \rightarrow PC		
Status Affected:	None		
Description:	The program counter is loaded from the top of the stack (the return address). This is a		
·	two-cycle instruction.		
Cycles:	2		
•			
RL	Rotate Left R		
Syntax:	RL R, d		
Operands:	$0 \le R \le 0xBF$		
	d∈ [0,1]		
Operation:	$R<6:0> \rightarrow dest<7:1>$,		
	R<7>→ dest<0>		
Status Affected:	None		
Description:	The contents of register 'R' are rotated left one bit. If 'd' is 0 the result is placed in the ACC		
	register. If 'd' is 1 the result is stored back in register 'R'.		
Cycles:	1		
RLO	Rotate Left R with 0		
Syntax:	RLO R, d		
Operands:	$0 \le R \le 0 xBF$		
	d∈ [0,1]		
Operation:	$R<6:0> \rightarrow dest<7:1>,$		
	$0 \rightarrow \text{dest} < 0 >$		
Status Affected:	None		
Description:	The contents of register 'R' are rotated left one bit to the left and bit0 fills with "0". If 'd' is 0 the		
	result is placed in the ACC register. If 'd' is 1 the result is stored back in register 'R'.		
Cycles:	1		
RL1	Rotate Left R with 1		
Svntax:	RI1 R.d		
Operands:	$0 \le R \le 0xBF$		
oporarido.	$d \in [0, 1]$		
Operation:	R = [0, 1] R=6:0> \rightarrow dest=7:1>		
oporation.	$1 \rightarrow \text{dest}_{0}$		
Status Affected	None		
Description:	The contents of register 'R' are rotated left one bit to the left and bit0 fills with "1". If 'd' is 0 the		
20001121011.	result is placed in the ACC register. If 'd' is 1 the result is stored back in register 'P'		
Cycles:			
-,			

RLR	Rotate Left R through Carry
Syntax:	RLR R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	R<7> → C;
	$R<6:0> \rightarrow dest<7:1>;$
	$C \rightarrow dest<0>$
Status Affected:	C
Description:	The contents of register 'R' are rotated left one bit to the left through the Carry Flag. If 'd' is 0
	the result is placed in the ACC register. If 'd' is 1 the result is stored back in register 'R'.
Cycles:	1
RR	Rotate Right R
Syntax:	RR R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$R<7:1> \rightarrow dest<6:0>,$
	$R<0> \rightarrow dest<7>$
Status Affected:	None
Description:	The contents of register 'R' are rotated right one bit. If 'd' is 0 the result is placed in the ACC
	register. If 'd' is 1 the result is placed back in register 'R'.
Cycles:	1
RR0	Rotate Right R with 0
Syntax:	RR0 R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$0 \rightarrow \text{dest} < 7 >$,
	$R<7:1> \rightarrow dest<6:0>,$
Status Affected:	None
Description:	The contents of register 'R' are rotated right one bit and bit7 fills with "0". If 'd' is 0 the result is
	placed in the ACC register. If 'd' is 1 the result is placed back in register 'R'.
Cycles:	1
RR1	Rotate Right R with 1
Syntax:	RR1 R, d
Operands:	$0 \le R \le 0xBF$
	d∈ [0,1]
Operation:	$1 \rightarrow \text{dest} < 7 >$,
	R<7:1> → dest<6:0>,
Status Affected:	None
Description:	The contents of register 'R' are rotated right one bit and bit7 fills with "1". If 'd' is 0 the result is
	placed in the ACC register. If 'd' is 1 the result is placed back in register 'R'.
Cycles:	1

RRR	Rotate Right R through Carry
Syntax:	RRR R, d
Operands:	$0 \le R \le 0xBF$
	$d \in [0,1]$
Operation:	$C \rightarrow dest<7>;$
	R<7:1> → dest<6:0>;
	$R<0> \rightarrow C$
Status Affected:	C
Description:	The contents of register 'R' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in the ACC register. If 'd' is 1 the result is placed back in register 'R'.
Cycles:	1
SLEEP	Enter SLEEP Mode
Syntax:	SLEEP
Operands:	None
Operation:	$OOh \rightarrow WDT;$
	$1 \rightarrow \overline{TO};$
	$0 \rightarrow \underline{PD}$
Status Affected:	TO,PD
Description:	Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT is
	cleared.
	The processor is put into SLEEP mode.
Cycles:	1
SBCAR	Subtract ACC from R with Carry
Syntax:	SBCAR R, d
Operands:	$0 \le R \le 0xBF$ $d \in [0,1]$
Operation:	$R + \overline{ACC} + C \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add the 2's complement data of the ACC register from register 'R' with Carry. If 'd' is 0 the result is stored in the ACC register. If 'd' is 1 the result is stored back in register 'R'.
Cycles:	1
SUBAR	Subtract ACC from R
Syntax:	SUBAR R, d
Operands:	$0 \le R \le 0xBF$
	d∈[0,1]
Operation:	$R - ACC \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) the ACC register from register 'R'. If 'd' is 0 the result is
	stored in the ACC register. If 'd' is 1 the result is stored back in register 'R'.
Cycles:	1
SUBIA	Subtract ACC from Immediate
Syntax:	SUBIA I
Operands:	$0 \le I \le 0 x FF$
Operation:	$I - ACC \rightarrow ACC$
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) the ACC register from the 8-bit immediate 'I'. The result is
	placed in the ACC register.
Cycles:	1

SWAPR	Swap nibbles in R
Syntax:	SWAPR R, d
Operands:	0≤R≤0xBF
	$d \in [0,1]$
Operation:	$R < 3.0 > \rightarrow dest < 7.4 > $
oporation	$R_{7}(4) \rightarrow dest_{3}(0)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'R' are exchanged. If 'd' is 0 the result is placed in
Description.	ACC register. If 'd' is 1 the result in placed in register 'R'
Cycles:	
Cycles.	
TABL	Table Look-up Low Byte
Svntax:	
Operands:	
Operation:	$\Delta C = POM/TB_RNK index : P (7:0)$
Status Affected:	
Description:	Road low byte ROM table to (ACC)
Description.	Read low byte ROM table to (RCC)
Cualaat	
Cycles.	2
ТАВЦ	Table Look-up High Byte
Suptov:	
Operande:	
Operation:	$0 \ge R \ge 0.00F$
Operation.	
Status Allected:	None
Description:	Read High byte RUM table to (ACC)
A 1	ROM table address={IB_BNK index : R }
Cycles:	2
тисомр	Test ACC and R. Skin if equal
Suptov:	
Operande:	
Operation:	$0 \leq R \leq 0.00F$
Operation.	
Status Allected:	None
Description:	If ACC is equal to R then the next instruction is skipped.
	If ACC is equal to R then next instruction fetched during the current instruction execution is
- ·	discarded, a NOP is executed instead and making this a 2-cycle instruction.
Cycles:	1/2
ТМСОМРВ	Test ACC and R. Skip if not equal
Syntax:	
Operands:	0 <r<0xbf< td=""></r<0xbf<>
Operation:	Skin if ACC \neq R
Status Affected	None
Description:	If ACC is not equal to R then the next instruction is skinned
	If ACC is not equal to P then next instruction fatched during the surrent instruction execution.
	in ACC is not equal to K them text instruction retched during the current instruction execution
Cualaat	is uiscailideu, a NOF is executeu insteau anu making this a 2-cycle instruction.
Cycles.	1/2

TMSZA	Test ACC, Skip if equal to 0
Syntax:	TMSZA
Operands:	None
Operation:	Skip if $ACC = 0$
Status Affected	None
Description:	If ACC is equal to 0 then the next instruction is skinned
Description.	If ACC is equal to 0 then next instruction fatched during the current instruction execution is
	discarded a NOP is executed instruction retoried during this a 2 civele instruction
Cueles:	
Cycles.	1/2
TMSNZR	Test R, Skip if not equal to 0
Syntax:	TMSNZR R
Operands:	$0 \le R \le 0xBF$
Operation:	Skip if R ≠ 0
Status Affected:	None
Description:	If R is not equal to 0 then the next instruction is skipped
Docomption	If R is not equal to 0 then next instruction fetched during the current instruction execution is
	discarded a NOP is executed instead and making this a 2-cycle instruction
Cycles	
Cycles.	172
TMSZR	Test R, Skip if equal to 0
Svntax:	TMSZR R
Operands:	$0 \le R \le 0 xBF$
Operation:	Skip if $R = 0$
Status Affected	None
Description:	If R is equal to 0 then the next instruction is skinned
Description.	If R is equal to 0 then next instruction fatched during the current instruction execution is
	discarded a NOP is executed instead and making this a 2-cycle instruction
Cycles:	
Cycles.	1/2
XORAR	Exclusive OR ACC with R
Syntax:	XORAR R, d
Operands:	0≤R≤0xBF
Ĩ	d∈[0.1]
Operation:	ACC xor $R \rightarrow dest$
Status Affected:	Z
Description:	Exclusive OR the contents of the ACC register with register 'R'. If 'd' is 0 the result is stored in
2000	the ACC register. If 'd' is 1 the result is stored back in register 'R'
Cycles:	1
Cycles.	
XORIA	Exclusive OR Immediate with ACC
Syntax:	XORIA I
Operands:	$0 \le I \le 0xFF$
Operation:	ACC xor I \rightarrow ACC
Status Affected:	Z
Description:	The contents of the ACC register are XOR'ed with the 8-bit immediate 'I'. The result is placed
·	in the ACC register.
Cvcles:	1

4.0 ABSOLUTE MAXIMUM RATINGS

Ambient Operating Temperature Store Temperature DC Supply Voltage (Vdd) Input Voltage with respect to Ground (Vss)

5.0 OPERATING CONDITIONS

DC Supply Voltage Operating Temperature

FM8PA76

-40°C to +85°C -65°C to +150°C 0V to +6.0V -0.3V to (Vdd + 0.3)V

> +2.2V to +5.5V -40℃ to +85℃

6.0 ELECTRICAL CHARACTERISTICS

6.1 ELECTRICAL CHARACTERISTICS of FM8PA76AE/76BE/DE/EE/FE

Ta=25℃

Under Op	erating Conditions, at fo	ur clock instruction cycles and WDT & L	VDT are disa	abled			
Sym	Description	Conditions	Min.	Тур.	Max.	Unit	
L		HF mode, Vdd=5V, Fcpu=Fosc/2			20		
FHF	X'tal oscillation range	HF mode, Vdd=3V, Fcpu=Fosc/2			15	MHZ	
F _{XT} X'ta		XT mode, Vdd=5V, Fcpu=Fosc/2			10		
	X'tal oscillation range	XT mode, Vdd=3V, Fcpu=Fosc/2			10	MHz	
_		LF mode, Vdd=5V, Fcpu=Fosc/2			4000		
F _{LF}	X'tal oscillation range	LF mode, Vdd=3V, Fcpu=Fosc/2			1000	KHZ	
_		ERC mode, Vdd=5V, Fcpu=Fosc/2			15		
FERC	RC oscillation range	ERC mode, Vdd=3V, Fcpu=Fosc/2			7	MHz	
		With schmitter					
Vін	Input high voltage	I/O ports	0.7vdd		vdd	V	
		RSTB pin	0.8vdd		vdd		
		With schmitter					
Vii	Input low voltage	I/O ports	VSS		0 2vdd	v	
VIL	input ion voltage	RSTB nin	VSS		0.2vdd		
		$\frac{1}{10} = 51 \sqrt{10}$	100		1		
I⊫	Input Leakage Current	$\frac{1}{1000} = \frac{1}{1000} \frac{1}{10$			1	uA	
	IO Drive Current	$V_{\rm H} = 0.0000000000000000000000000000000000$		0		mA	
I _{OH}		VOH = 4.5 V/d = 5 V		17			
		$VOI_{=4}^{-0}$, $Vdd = 5V$		17			
IOL	IO Sink Current	VOL =0.3V, Vdd = 5V		19		mA	
		VOL = 0.75V, $Vdd = 5V$	C.F.	20	105		
R_{PH}	Pull-high resister	Input pin at Vss, vdd=3V	125	250	375	KΩ	
	WDT current	V/dd=5V	120	230	575		
IWDT		Vdd=3V		2		uA	
		Vdd-3V		2/			
T_{WDT}	WDT period	Vdd=5V		24		mS	
		LVDT = 3.7V. vdd=5V		2			
		LVDT = 2.6V, vdd=5V		3			
ILVDT	LVDT current	LVDT = 2.6V, vdd=3V		0.5		uA	
		LVDT = 2.2V, vdd=5V		3			
		LVDT = 2.2V, vdd=3V		0.5			
		LVDT = 3.7V	3.5	3.7	3.9		
V_{LVDT}	LVDT voltage	LVDT = 2.6V	2.4	2.6	2.8	V	
		LVDT = 2.2V	2.0	2.2	2.4		
V _{AD}	A/D input Voltage		0		VDD	V	
R _{AD}	Resolution				12	Bits	
DNL	Linear				2	LSB	
INL	A/D Integral Non- Linear				3	LSB	
	A/D Operation Current	Vdd = 5V, Fcpu=Fosc/4		600			
I _{ADC}	A/D Operation Current	Vdd = 3V, Fcpu=Fosc/4		100		uΑ	

Sym	Description	Conditions	Min.	Тур.	Max.	Unit	
T _{AD}	A/D clock period		8			us	
T _{ADC}	A/D Conversion Time			25		T _{AD}	
T _{ADCS}	A/D Sampling Time			8		T _{AD}	
		Sleep mode, Vdd=5V, WDT enable, LVDT off		9			
		Sleep mode, Vdd=5V, WDT disable, LVDT off			1		
ISB	Power down current	Sleep mode, Vdd=3V, WDT enable, LVDT off		3		UA	
		Sleep mode, Vdd=3V, WDT disable, LVDT off			1		
I _{DD1}	Operating current	IRC mode, vdd=5V, 4 clock instruction		0.9		mA	
I _{DD2}	Operating current	IRC mode, vdd=5V, 2 clock instruction		1.4		mA	
I _{DD3}	Operating current	IRC mode, vdd=3V, 4 clock instruction		0.5		mA	
I _{DD4}	Operating current	IRC mode, vdd=3V, 2 clock instruction		0.7		mA	
		HF mode, vdd=5V, 4 clock instruction					
IDD5	Operating current	20MHz		4		mΑ	
1		HF mode, vdd=5V, 2 clock instruction					
IDD6	Operating current	20MHz		6		mA	
1007	Operating current	HF mode, vdd=3V, 4 clock instruction				m۵	
יטטי		20MHZ		2		ША	
		XT mode, Vdd=5V, 4 clock instruction		n	n		
I _{DD8}	Operating current	10MHz		3		m۸	
		4MHz		1.5			
		XT mode, Vdd=5V, 2 clock instruction					
I _{DD9}	Operating current	10MHz		3.5		mA	
		4MHz		1.8			
		XT mode, Vdd=3V, 4 clock instruction			I		
I _{DD10}	Operating current	10MHz		1		mA	
		4MHz		0.5			
		XT mode, Vdd=3V, 2 clock instruction					
I _{DD11}	Operating current	10MHz		1.5		mA	
		4MHz		0.8			
חח	Operating current	LF mode, Vdd=5V, 4 clock instruction				uА	
.00	operaning carrent	32KHz		30			
lac	Operating current	LF mode, Vdd=5V, 2 clock instruction					
12טטי	Operating current	32KHz		35		uЛ	
	Operating current	LF mode, Vdd=3V, 4 clock instruction					
I _{DD13}	Operating current	32KHz		8		uA	
		LF mode, Vdd=3V, 2 clock instruction					
I _{DD14}	Operating current	32KHz		10		uA	

6.2 ELECTRICAL CHARACTERISTICS Charts of FM8PA76AE/76BE/DE/EE/FE

6.2.1 Internal 4MHz RC vs. Temperature (VDD=5V)

6.2.2 Internal 4MHz RC vs. Supply Voltage (Ta=25℃)

6.2.3 Low Voltage Detect (LVDT=2.2V) vs. Temperature

CAUTION: The LVDT 2.2V option can only support temperature range between -40~65 $^\circ\!\!\mathbb{C}$

LV2.6V 3.65.4 3.3.2.1 3.3.3.2.2 2.2.2.2.4 3.2.2.1 9.87 2.2.2.4 2.2.2 1.1.8 1.7 Voltage - LV2.6V 95 105 115 125 -35 -25 -15 -5 5 15 25 45 65 75 85 35 55 Temperature

6.2.4 Low Voltage Detect (LVDT=2.6V) vs. Temperature

7.0 PACKAGE DIMENSION

7.1 20-PIN PDIP

Symbolo	Dimension In Inches			
Symbols	Min	Nom	Max	
А	-	-	0.210	
A1	0.015	-	-	
A2	0.125	0.130	0.135	
D	0.98	1.030	1.060	
E	0.300 BSC			
E1	0.245	0.250	0.255	
L	0.115	0.130	0.150	
eB	0.335	0.355	0.375	
θ°	0°	7°	15°	

7.2 20-PIN SOP

Symbole	Dimension In Inches			
Symbols	Min	Nom	Max	
А	0.093	-	0.104	
A1	0.004	-	0.012	
D	0.496	-	0.508	
E	0.291	-	0.299	
Н	0.394	-	0.419	
L	0.016	-	0.050	
θ°	0°	-	8°	

7.3 20-PIN SSOP 209 mil

Currente e la	Dime	Dimension In Millimeters			
Symbols	Min	Nom	Max		
А	-	-	2.00		
A1	0.05	-	-		
A2	1.65	1.75	1.85		
b	0.22	-	0.38		
С	0.09	-	0.21		
D	6.90	7.20	7.50		
E	7.40	7.80	8.20		
E1	5.00	5.30	5.60		
е	-	0.65	-		
L	0.55	0.75	0.95		
L1	-	1.25	-		
θ°	0°	4°	8°		

FM8PA76

7.4 14-PIN PDIP 300mil

Symbolo	Dimension In Inches		
Symbols	Min	Nom	Max
А	-	-	0.210
A1	0.015	-	-
A2	0.125	0.130	0.135
D	0.735	0.750	0.775
E	0.300 BSC.		
E1	0.245	0.250	0.255
L	0.115	0.130	0.150
eB	0.335	0.355	0.375
θ°	0°	7°	15°

7.5 14-PIN SOP 150mil

Symbolo	Dimension In Inches			
Symbols	Min	Nom	Max	
А	0.058	0.064	0.068	
A1	0.004	-	0.010	
В	0.013	0.016	0.020	
С	0.0075	0.008	0.0098	
D	0.336	0.341	0.344	
E	0.150	0.154	0.157	
е	-	0.050	-	
н	0.228	0.236	0.244	
L	0.015	0.025	0.050	
θ°	0°	-	8°	

FM8PA76

7.6 16-PIN PDIP 300mil

Sympole	Dimension In Inches			
Symbols	Min	Nom	Max	
А	-	-	0.210	
A1	0.015	-	-	
A2	0.125	0.130	0.135	
D	0.735	0.755	0.775	
E	0.300 BSC			
E1	0.245	0.250	0.255	
L	0.115	0.130	0.150	
eB	0.335	0.355	0.375	
θ°	0°	7°	15°	

7.7 16-PIN SOP 150mil

ð

Symbols	Dimension In Inches		
	Min	Max	
А	0.053	0.069	
A1	0.004	0.010	
A2	0.049	0.065	
D	0.386	0.394	
E	0.150	0.157	
Н	0.228	0.244	
L	0.016	0.050	
θ°	0°	8°	

FM8PA76

7.8 24-PIN PDIP 300mil (SKINNY)

Symbols	Dimension In Inches		
	Min	Nom	Max
А	-	-	0.210
A1	0.015	-	-
A2	0.125	0.130	0.135
D	1.230	1.250	1.280
E	0.300 BSC.		
E1	0.253	0.258	0.263
L	0.115	0.130	0.150
eB	0.335	0.355	0.375
θ°	0°	7°	15°

7.9 24-PIN SOP 300mil

Symbols	Dimension In Inches			
	Min	Nom	Max	
А	-	-	0.104	
A1	0.004	-	-	
D	0.599	0.600	0.624	
E	0.291	0.295	0.299	
Н	0.394	0.406	0.419	
L	0.016	0.035	0.050	
θ°	0°	4°	8°	

8.0 PACKAGE IR Re-flow Soldering Curve

9.0 ORDERING INFORMATION

OTP Type MCU	Package Type	Pin Count	Package Size
FM8PA76AEP	PDIP	20	300 mil
FM8PA76AED	SOP	20	300 mil
FM8PA76AER	SSOP	20	209 mil
FM8PA76BEP	PDIP	14	300 mil
FM8PA76BED	SOP	14	150 mil
FM8PA76DEP	PDIP	16	300 mil
FM8PA76DED	SOP	16	150 mil
FM8PA76EEP	PDIP	24	300 mil
FM8PA76EED	SOP	24	300 mil
FM8PA76FEP	PDIP	16	300 mil
FM8PA76FED	SOP	16	150 mil