PNP Multi-Chip General-Purpose Amplifier FMB3906, MMPQ3906

Description

This device is designed for general-purpose amplifier and switching applications at collector currents of 10 μA to 100 mA. Sourced from Process 66.

ABSOLUTE MAXIMUM RATINGS (Note 1)

(T_A = 25 °C, unless otherwise noted)

Symbol	Parameter	Value	Unit
V _{CEO}	Collector-Emitter Voltage	-40	V
V _{CBO}	Collector-Base Voltage	-40	V
V _{EBO}	Emitter-Base Voltage	- 5	V
I _C	Collector Current – Continuous	-200	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 to +150	°C

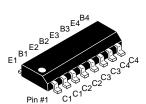
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

 These ratings are based on a maximum junction temperature of 150°C. These are steady-state limits. onsemi should be consulted on applications involving pulsed or low-duty cycle operations.

THERMAL CHARACTERISTICS (Note 2)

(T_A = 25 °C, unless otherwise noted)

		Max		
Symbol	Parameter	FMB3906	MMPQ3906	Unit
P _D	Total Device Dissipation	700	1,000	mW
	Derate Above 25 °C	5.6	8.0	mW/°C
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	180	-	°C/W
	Thermal Resistance, Junction to Ambient, Effective 4 Die	-	125	°C/W
	Thermal Resistance, Junction to Ambient, Each Die	-	240	°C/W


 PCB size: FR-4 76 x 114 x 0.6T mm³ (3.0 inch x 4.5 inch x 0.062 inch) with minimum land pattern size.

MARKING DIAGRAM

TSOT23 6-Lead CASE 419BL

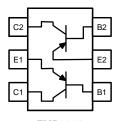
SOIC-16, 150 mils CASE 751BG

2A, MMPQ3906 = Specific Device Code

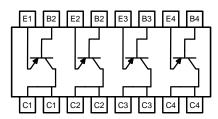
M = Date Code

■ Pb-Free Package

A = Assembly Site


WL = Wafer Lot Number

Y = Year of Production


WW = Work Week Number

(Note: Microdot may be in either location)

INTERNAL CONNECTIONS

FMB3906

MMPQ3906

ORDERING INFORMATION

Device	Package	Shipping [†]
FMB3906	TSOT23 (Pb-Free, Halide Free)	3000 / Tape & Reel
MMPQ3906	SOIC-16 (Pb-Free, Halide Free)	2500 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Symbol	Parameter		Conditions	Min	Тур	Max	Unit
OFF CHAR	ACTERISTICS		•	•			•
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage (Note 3)		$I_C = -1.0 \text{ mA}, I_B = 0$	-40	_	_	V
V _{(BR)CBO}	Collector-Base Breakdown V	oltage	$I_C = -10 \mu A, I_E = 0$	-40	-	_	V
V _{(BR)EBO}	Emitter-Base Breakdown Vol	tage	$I_E = -10 \mu A, I_C = 0$	-5.0	_	_	V
I _{BL}	Base Cut-Off Current		$V_{CE} = -30 \text{ V}, V_{BE} = 3.0 \text{ V}$	_	_	-50	nA
I _{CEX}	Collector Cut-Off Current		$V_{CE} = -30 \text{ V}, V_{BE} = 3.0 \text{ V}$	-	-	-50	nA
ON CHARA	CTERISTICS						
h _{FE}	DC Current Gain (Note 3)	FMB3906	$I_C = -0.1 \text{ mA}, V_{CE} = -1.0 \text{ V}$	60	_	_	
		MMPQ3906		40	_	_	1
		FMB3906	$I_C = -1.0 \text{ mA}, V_{CE} = -1.0 \text{ V}$	80	_	_	1
		MMPQ3906		60	_	_	1
		FMB3906	$I_C = 10 \text{ mA}, V_{CE} = -1.0 \text{ V}$	100	_	300	1
		MMPQ3906		75	_	_	1
		All Devices	$I_C = -50 \text{ mA}, V_{CE} = -1.0 \text{ V}$	60	_	_	1
		All Devices	$I_C = -100 \text{ mA}, V_{CE} = -1.0 \text{ V}$	30	_	_	1
V _{CE(sat)}	Collector-Emitter Saturation \	/oltage	$I_C = -10 \text{ mA}, I_B = -1.0 \text{ mA}$	-	_	-0.25	V
			$I_C = -50 \text{ mA}, I_B = -5.0 \text{ mA}$	-	_	-0.40	
V _{BE(sat)}	($I_C = -10 \text{ mA}, I_B = -1.0 \text{ mA}$	-0.65	_	-0.85	V
			$I_C = -50 \text{ mA}, I_B = -5.0 \text{ mA}$	-	-	-0.95	1
SMALL-SIG	NAL CHARACTERISTICS (MI	IPQ3906 ONLY)					
f _T	Current Gain-Bandwidth Product Output Capacitance Input Capacitance		$I_C = -10 \text{ mA}, V_{CE} = -20 \text{ V},$ f = 100 MHz	_	200	_	MHz
C _{ob}			$V_{CB} = -5.0 \text{ V}, I_E = 0, f = 140 \text{ kHz}$	-	4.5	-	pF
C _{ib}			$V_{EB} = -0.5 \text{ V}, I_{C} = 0, f = 140 \text{ kHz}$	-	10	_	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse test: pulse width $\leq 300 \ \mu s$, duty cycle $\leq 2.0\%$.

TYPICAL PERFORMANCE CHARACTERISTICS

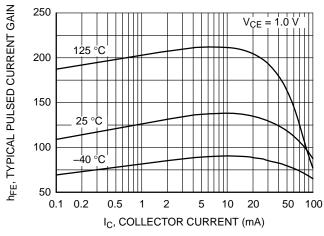


Figure 1. Typical Pulsed Current Gain vs. Collector Current

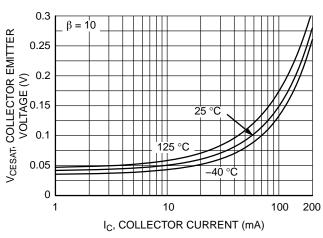


Figure 2. Collector-Emitter Saturation Voltage vs.
Collector Current

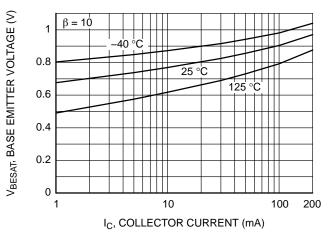


Figure 3. Base-Emitter Saturation Voltage vs.
Collector Current

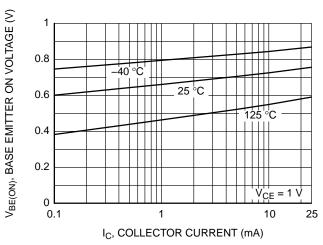


Figure 4. Base-Emitter On Voltage vs. Collector Current

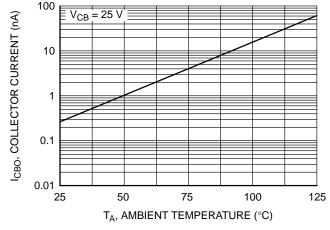


Figure 5. Collector Cut-Off Current vs.
Ambient Temperature

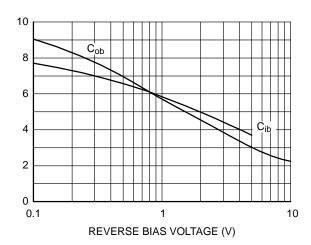


Figure 6. Common-Base Open Circuit Input and Output Capacitance vs. Reverse Bias Voltage

CAPACITANCE (pF)

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

NF, NOISE FIGURE (dB)

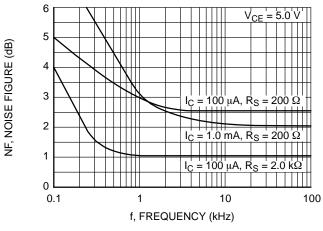


Figure 7. Noise Figure vs. Frequency

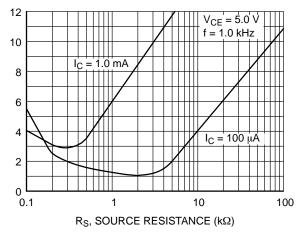


Figure 8. Noise Figure vs. Source Resistance

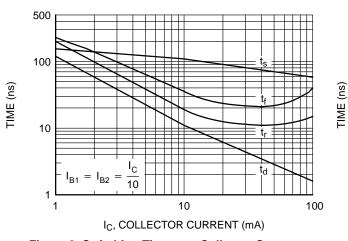


Figure 9. Switching Times vs. Collector Current

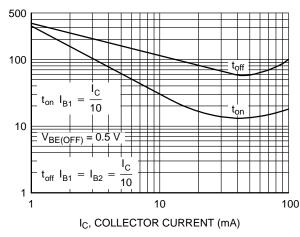


Figure 10. Turn-On and Turn-Off Times vs.
Collector Current

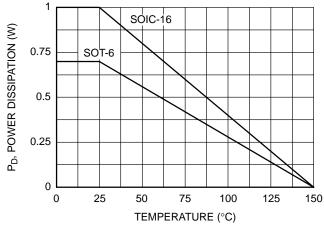


Figure 11. Power Dissipation vs.
Ambient Temperature

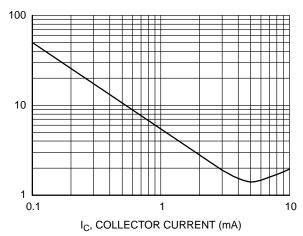


Figure 12. Voltage Feedback Ratio

h_{re}, VOLTAGE FEEDBACK RATIO (x10⁻⁴)

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

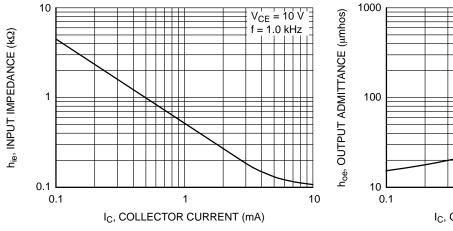
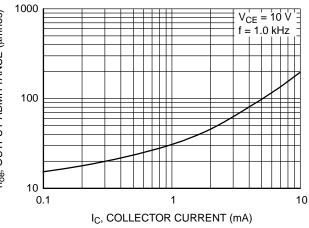



Figure 13. Input Impedance Figure 14. Output Admittance

1000 500 VCE = 10 V - 10 KHz - 10 KHz

Figure 15. Current Gain

0.20 C

// 0.10 C

0.10 C

PIN 1 **IDENTIFIER**

TSOT23 6-Lead CASE 419BL **ISSUE A**

-[A]

F1

-b

A2

C

GAGE PLANE

SEATING PLANE

A1-

e1 TOP VIEW

FRONT VIEW

DETAIL A

В

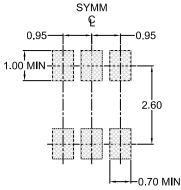
0.20 C

DATE 31 AUG 2020

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
 DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,
 PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.25MM PER END. DIMENSIONS D AND E1 ARE DETERMINED AT DATUM H.
- 4. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

DIM L



DIM	MIN.	NOM.	MAX.
Α	0.90	1.00	1.10
A1	0.00	0.05	0.10
A2	0.70	0.85	1.00
А3		0.25 BSC	
b	0.25	0.38	0.50
С	0.10	0.18	0.26
D	2.80	2.95	3.10
d	0.30 REF		
E	2.50	2.75	3.00
E1	1.30	1.50	1.70
е		0.95 BSC	;
e1	1.90 BSC		
L1	0.60 REF		
L2	0.20	0.40	0.60
θ	0°		10°

MILLIMETERS

SIDE VIEW

LAND PATTERN RECOMMENDATION

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code

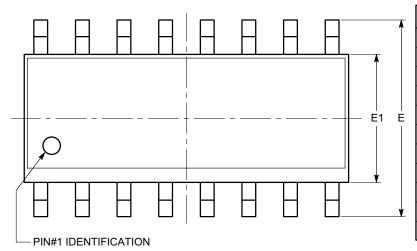
= Date Code

= Pb-Free Package

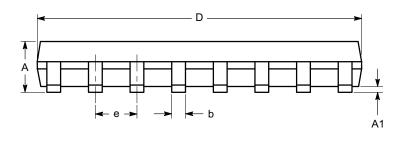
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ", may or may not be present. Some products may not follow the Generic Marking.

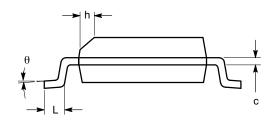
DOCUMENT NUMBER:	98AON83292G	Electronic versions are uncontrolled except when accessed directly from the Docur Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in		
DESCRIPTION:	TSOT23 6-Lead		PAGE 1 OF 1	


onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

PACKAGE DIMENSIONS


SOIC-16, 150 mils CASE 751BG ISSUE O

DATE 19 DEC 2008



SYMBOL	MIN	NOM	MAX
Α	1.35		1.75
A1	0.10		0.25
b	0.33		0.51
С	0.19		0.25
D	9.80	9.90	10.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27 BSC	
h	0.25		0.50
L	0.40		1.27
θ	0°		8°

TOP VIEW

SIDE VIEW

END VIEW

Notes:

- (1) All dimensions are in millimeters. Angles in degrees.
- (2) Complies with JEDEC MS-012.

DOCUMENT NUMBER:	98AON34275E	Electronic versions are uncontrolled except when accessed directly from the Document Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16, 150 mils		PAGE 1 OF 1	

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales