FNK N-Channel Enhancement Mode Power MOSFET #### **Description** The FNK04N 04 uses advanced trench technology and design to provide excellent $R_{\rm DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. #### **General Features** - V_{DS} =40V, I_D =90A $R_{DS(ON)}$ <4.0m Ω @ V_{GS} =10V (Typ:3.2m Ω) - High density cell design for ultra low Rdson - Fully characterized avalanche voltage and current - Good stability and uniformity with high E_{AS} - Excellent package for good heat dissipation ### **Application** - Power switching application - Hard switched and high frequency circuits - Uninterruptible power supply Schematic diagram Marking and pin assignment DFN5X6 #### **Package Marking and Ordering Information** | Device Marking | Device | Device Package | Reel Size | Tape width | Quantity | |----------------|----------|----------------|-----------|------------|----------| | FNK04N04 | FNK04N04 | DFN5*6 | - | - | - | #### Absolute Maximum Ratings (T_C=25°Cunless otherwise noted) | Parameter | Symbol | Limit | Unit | |--|---------------------|------------|------| | Drain-Source Voltage | V _{DS} | 40 | V | | Gate-Source Voltage | V _G s | ±20 | V | | Drain Current-Continuous | I _D | 90 | Α | | Drain Current-Continuous(T _C =100 ℃) | ID(100 ℃) | 63 | А | | Pulsed Drain Current | I _{DM} | 250 | А | | Maximum Power Dissipation | P _D | 90 | W | | Derating factor | | 0.6 | W/C | | Single pulse avalanche energy (Note 5) | E _{AS} | 760 | mJ | | Operating Junction and Storage Temperature Range | T_{J} , T_{STG} | -55 To 175 | r | #### **Thermal Characteristic** #### Electrical Characteristics (T_c=25°Cunless otherwise noted) | Parameter | Symbol | Condition | Min | Тур | Max | Unit | |------------------------------------|---------------------|--|-----|------|------|------| | Off Characteristics | · | | • | | | | | Drain-Source Breakdown Voltage | BV _{DSS} | V _{GS} =0V I _D =250µA | | | - | V | | Zero Gate Voltage Drain Current | I _{DSS} | V _{DS} =40V,V _{GS} =0V | - | - | 1 | μΑ | | Gate-Body Leakage Current | I _{GSS} | V _{GS} =±20V,V _{DS} =0V | - | - | ±100 | nA | | On Characteristics (Note 3) | | | • | | | | | Gate Threshold Voltage | V _{GS(th)} | V _{DS} =V _{GS} ,I _D =250μA | 1.2 | 1.8 | 2.5 | V | | Drain-Source On-State Resistance | R _{DS(ON)} | V _{GS} =10V, I _D =20A | - | 3.2 | 4 | mΩ | | Forward Transconductance | g FS | V _{DS} =10V,I _D =20A | 24 | - | - | S | | Dynamic Characteristics (Note4) | · | | • | | | | | Input Capacitance | C _{lss} | \\ -20\\\\ -0\\ | - | 4000 | - | PF | | Output Capacitance | Coss | V _{DS} =20V,V _{GS} =0V, | - | 550 | - | PF | | Reverse Transfer Capacitance | C _{rss} | F=1.0MHz | - | 180 | - | PF | | Switching Characteristics (Note 4) | · | | • | | | | | Turn-on Delay Time | t _{d(on)} | | - | 12 | - | nS | | Turn-on Rise Time | t _r | V_{DD} =20V, I_D =2A, R_L =1 Ω | - | 16 | - | nS | | Turn-Off Delay Time | t _{d(off)} | V_{GS} =10V, R_{G} =3 Ω | - | 48 | - | nS | | Turn-Off Fall Time | t _f | | - | 19 | - | nS | | Total Gate Charge | Qg | \/ 00\/ L 00 A | - | 65 | | nC | | Gate-Source Charge | Q _{gs} | $V_{DS}=20V,I_{D}=20A,$
$V_{GS}=10V$ | - | 14 | | nC | | Gate-Drain Charge | Q_{gd} | V _{GS} =10V | - | 15 | | nC | | Drain-Source Diode Characteristics | | 1 | | | | | | Diode Forward Voltage (Note 3) | V _{SD} | V _{GS} =0V,I _S =10A | - | | 1.2 | V | | Diode Forward Current (Note 2) | Is | | - | - | 90 | Α | | Reverse Recovery Time | t _{rr} | TJ = 25°C, IF = 20A | - | 36 | - | nS | | Reverse Recovery Charge | Qrr | di/dt = 100A/µs(Note3) | - | 38 | - | nC | | Forward Turn-On Time | t _{on} | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) | | | | | ### Notes: - Repetitive Rating: Pulse width limited by maximum junction temperature. - 2. Surface Mounted on FR4 Board, t ≤ 10 sec. - 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%. - 4. Guaranteed by design, not subject to production - 5. E_{AS} condition : Tj=25 $^{\circ}$ C, V_{DD} =20V, V_{G} =10V,L=1mH,Rg=25 Ω , I_{AS} =39A ## **Test circuit** # 1) E_{AS} Test Circuit # 2) Gate Charge Test Circuit # 3) Switch Time Test Circuit FNK-Semiconductor 3/7 Feb.2017.Rev.1.0 # Typical Electrical and Thermal Characteristics (Curves) **Figure 1 Output Characteristics** **Figure 2 Transfer Characteristics** Figure 3 Rdson- Drain Current Figure 4 Rdson-JunctionTemperature Figure 5 Gate Charge Figure 6 Source- Drain Diode Forward Figure 8 Safe Operation Area **Figure 10ID Current- Junction Temperature** Figure 11 Normalized Maximum Transient Thermal Impedance # **DFN5X6-8L Package Information** | Symbol | Dimensions In Millimeters | | Dimensions In Inches | | | |--------|---------------------------|-------|----------------------|-------|--| | | Min. | Max. | Min. | Max. | | | Α | 0.900 | 1.000 | 0.035 | 0.039 | | | A3 | 0.254REF. | | 0.010REF. | | | | D | 4.944 | 5.096 | 0.195 | 0.201 | | | Е | 5.974 | 6.126 | 0.235 | 0.241 | | | D1 | 3.910 | 4.110 | 0.154 | 0.162 | | | E1 | 3.375 | 3.575 | 0.133 | 0.141 | | | D2 | 4.824 | 4.976 | 0.190 | 0.196 | | | E2 | 5.674 | 5.826 | 0.223 | 0.229 | | | k | 1.190 | 1.390 | 0.047 | 0.055 | | | b | 0.350 | 0.450 | 0.014 | 0.018 | | | е | 1.270TYP. | | 0.050TYP. | | | | L | 0.559 | 0.711 | 0.022 | 0.028 | | | L1 | 0.424 | 0.576 | 0.017 | 0.023 | | | Н | 0.574 | 0.726 | 0.023 | 0.029 | | | θ | 10° | 12° | 10° | 12° | | #### Disclaimer: - FNK reserves the right to make changes to the information herein for the improvement of the design and performance without further notice! Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current. - All semiconductor products malfunction or fail with some probability under special conditions. When using FNK products in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety standards strictly and take essential measures to avoid situations in which a malfunction or failure of such Silan products could cause loss of body injury or damage to property. - FNK will supply the best possible product for customers!