onsemi

OptoHiT[™] Series, High-Temperature Phototransistor Optocoupler in Half-Pitch Mini-Flat 4-Pin Package

FODM8801A, FODM8801B, FODM8801C

Description

In the OptoHiT series, the FODM8801 is a first-of-kind phototransistor, utilizing **onsemi**'s leading-edge proprietary process technology to achieve high operating temperature characteristics, up to 125° C. The opto-coupler consists of an aluminum gallium arsenide (AlGaAs) infrared light-emitting diode (LED) optically coupled to a phototransistor, available in a compact half-pitch, mini- flat, 4-pin package. It delivers high current transfer ratio at very low input current. The input-output isolation voltage, V_{ISO}, is rated at 3750 VAC_{RMS}.

Features

- Utilizing Proprietary Process Technology to Achieve High Operating Temperature: Up to 125°C
- Guaranteed Current Transfer Ratio (CTR) Specifications Across Full Temperature Range
 - Excellent CTR Linearity at High-Temperature
 - CTR at Very Low Input Current, IF
- High Isolation Voltage Regulated by Safety Agency: C-UL / UL1577, 3750 VAC_{RMS} for 1 Minute and DIN EN/IEC60747-5-5
- Compact Half-Pitch, Mini-Flat, 4-Pin Package (1.27 mm Lead Pitch, 2.4 mm Maximum Standoff Height)
- >5 mm Creepage and Clearance Distance
- Applicable to Infrared Ray Reflow, 245°C
- These are Pb–Free Devices

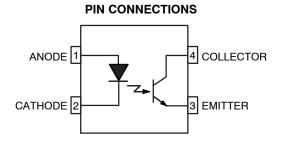
Applications

- Primarily Suited for DC-DC Converters
- Ground-Loop Isolation, Signal-Noise Isolation
- Communications Adapters, Chargers
- Consumer Appliances, Set–Top Boxes
- Industrial Power Supplies, Motor Control, Programmable Logic Control

HALF-PITCH MINI-FLAT

MFP4 2.5 x 4.4, 1.27P CASE 100AL

MARKING DIAGRAM



8801x =Specific Device Code (x = A, B, C)

- DIN EN/IEC60747–5–5 Option (only appears on component ordered with this option)
- X = One-Digit Year Code
- YY = Digit Work Week

v

M = Assembly Package Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 9 of this data sheet.

SAFETY AND INSULATION RATINGS (As per DIN EN/IEC 60747-5-5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Parameter	Characteristics	
Installation Classifications per DIN VDE	<150 V _{RMS}	I–IV
0110/1.89 Table 1, For Rated Mains Voltage	<300 V _{RMS}	I–III
Climatic Classification	40/125/21	
Pollution Degree (DIN VDE 0110/1.89)	2	
Comparative Tracking Index	175	

Symbol	Parameter	Value	Unit	
V_{PR}	Input-to-Output Test Voltage, Method A, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10 \text{ s}$, Partial Discharge < 5 pC	848	V _{peak}	
	Input-to-Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 \text{ s}$, Partial Discharge <5 pC	1060	V _{peak}	
V _{IORM}	Maximum Working Insulation Voltage	565	V _{peak}	
V _{IOTM}	Highest Allowable Over-Voltage	6000	V _{peak}	
	External Creepage	≥5	mm	
	External Clearance	≥5	mm	
DTI	Distance Through Insulation (Insulation Thickness)	≥0.5	mm	
Τ _S	Case Temperature (Note 1)	150	°C	
I _{S,INPUT}	Input Current (Note 1)	200	mA	
Ps,output	Output Power (Note 1)	300	mW	
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)	>10 ⁹ Ω		

1. Safety limit values - maximum values allowed in the event of a failure.

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$, unless otherwise noted)

Symbol	Parameter	Value	Unit
TOTAL PAG	CKAGE		
T _{STG}	Storage Temperature	-40 to +150	°C
T _{OPR}	Operating Temperature	-40 to +125	°C
ТJ	Junction Temperature	-40 to +140	°C
T _{SOL}	Lead Solder Temperature	245 for 10 s	°C
EMITTER			
IF _(average)	Continuous Forward Current	20	mA
V _R	Reverse Input Voltage	6	V
PD _{LED}	Power Dissipation (Note 2, 4)	40	mW
DETECTOR	3		
IC _(average)	Continuous Collector Current	30	mA
V _{CEO}	Collector-Emitter Voltage	75	V
V _{ECO}	Emitter-Collector Voltage	7	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

150

mW

2. Derate linearly from 73°C at a rate of 0.24 mW/°C.

Collector Power Dissipation (Note 3, 4)

З. Derate linearly from 73°C at a rate of 2.23 mW/°C.

 PD_C

4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
T _A	Operating Temperature	-40 to +125	°C
V _{FL(OFF)}	Input Low Voltage	-5.0 to +0.8	V
I _{FH}	Input High Forward Current	1 to 10	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ISOLATION CHARACTERISTICS

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ISO}	Input-Output Isolation Voltage	f = 60 Hz, t = 1 min., $I_{I-O} \leq$ 10 μA (Note 5, 6)	3,750	-	-	VAC _{RMS}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V (Note 5)	10 ¹²	-	-	Ω
C _{ISO}	Isolation Capacitance	f = 1 MHz	-	0.3	0.5	pF

5. Device is considered a two-terminal device: pins 1 and 2 are shorted together and pins 3 and 4 are shorted together.

6. 3,750 VAC_{RMS} for 1 minute is equivalent to 4,500 VAC_{RMS} for 1 second.

ELECTRICAL CHARACTERISTICS Apply over all recommended conditions ($T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified.) All typical values are measured at $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
EMMITER						
V _F	Forward Voltage	I _F = 1 mA	1.00	1.35	1.80	V
$\Delta V_{F} / \Delta T_{A}$	Forward-Voltage Coefficient	I _F = 1 mA	-	-1.6	-	mV/°C
I _R	Reverse Current	V _R = 6 V	-	-	10	μΑ
CT	Terminal Capacitance	V = 0 V, f = 1 MHz	-	30	-	pF

DETECTOR

BV _{CEO}	Collector-Emitter Breakdown Voltage	l _C = 0.5 mA, l _F = 0 mA	75	130	_	V
BV _{ECO}	Emitter-Collector Breakdown Voltage	$I_E = 100 \ \mu\text{A}, I_F = 0 \ \text{mA}$	7	12	-	V
I _{CEO}	Collector Dark Current	V_{CE} = 75 V, I _F = 0 mA, T _A = 25°C	-	-	100	nA
		V _{CE} = 50 V, I _F = 0 mA	-	-	50	μΑ
		V _{CE} = 5 V, I _F = 0 mA	-	_	30	μA
C _{CE}	Capacitance	V _{CE} = 0 V, f = 1 MHz	-	8	_	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Symbol	Parameter	Device	Conditions	Min	Тур	Max	Unit
CTR _{CE}	Current Transfer	FODM8801A	$I_F = 1.0 \text{ mA}, V_{CE} = 5 \text{ V} @ T_A = 25^{\circ}\text{C}$	80	120	160	%
	Ratio (Collector-Emitter)		I _F = 1.0 mA, V _{CE} = 5 V	35	120	230	
			I _F = 1.6 mA, V _{CE} = 5 V	40	125	-	
			I _F = 3.0 mA, V _{CE} = 5 V	45	138	-	
		FODM8801B	$I_F = 1.0 \text{ mA}, V_{CE} = 5 \text{ V} @ T_A = 25^{\circ}\text{C}$	130	195	260	
			I _F = 1.0 mA, V _{CE} = 5 V	65	195	360	
			I _F = 1.6 mA, V _{CE} = 5 V	70	202	-	
			I _F = 3.0 mA, V _{CE} = 5 V	75	215	-	
		FODM8801C	$I_F = 1.0 \text{ mA}, V_{CE} = 5 \text{ V} @ T_A = 25^{\circ}\text{C}$	200	300	400	
			I _F = 1.0 mA, V _{CE} = 5 V	100	300	560	
			I _F = 1.6 mA, V _{CE} = 5 V	110	312	-	
			I _F = 3.0 mA, V _{CE} = 5 V	115	330	_	
CTR _{CE(SAT)}	Saturated Current	FODM8801A	$I_F = 1.0 \text{ mA}, V_{CE} = 0.4 \text{ V} @ T_A = 25^{\circ}\text{C}$	65	108	150	%
	Transfer Ratio (Collector-Emitter)		I _F = 1.0 mA, V _{CE} = 0.4 V	30	108	_	
			I _F = 1.6 mA, V _{CE} = 0.4 V	25	104	_	
			$I_F = 3.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$	20	92	_	
		FODM8801B	$I_F = 1.0 \text{ mA}, V_{CE} = 0.4 \text{ V} @ T_A = 25^{\circ}\text{C}$	90	168	245	
			I _F = 1.0 mA, V _{CE} = 0.4 V	45	168	_	
			$I_F = 1.6 \text{ mA}, V_{CE} = 0.4 \text{ V}$	40	155	_	
			$I_F = 3.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$	35	132	_	
		FODM8801C	$I_F = 1.0 \text{ mA}, V_{CE} = 0.4 \text{ V} @ T_A = 25^{\circ}\text{C}$	140	238	380	
			I _F = 1.0 mA, V _{CE} = 0.4 V	75	238	_	
			$I_F = 1.6 \text{ mA}, V_{CE} = 0.4 \text{ V}$	65	215	_	
			$I_F = 3.0 \text{ mA}, V_{CE} = 0.4 \text{ V}$	55	177	_	
V _{CE(SAT)}	Saturation Voltage	FODM8801A	I _F = 1.0 mA, I _C = 0.3 mA	-	0.17	0.40	V
			I _F = 1.6 mA, I _C = 0.4 mA	-	0.16	0.40	
			I _F = 3.0 mA, I _C = 0.6 mA	-	0.15	0.40	
		FODM8801B	I _F = 1.0 mA, I _C = 0.45 mA	-	0.17	0.40	
			I _F = 1.6 mA, I _C = 0.6 mA	-	0.16	0.40	1
			I _F = 3.0 mA, I _C = 1.0 mA	-	0.16	0.40	1
		FODM8801C	I _F = 1.0 mA, I _C = 0.75 mA	-	0.18	0.40	
			I _F = 1.6 mA, I _C = 1.0 mA	-	0.17	0.40	1
			I _F = 3.0 mA, I _C = 1.6 mA	-	0.17	0.40	1

TRANSFER CHARACTERISTICS Apply over all recommended conditions ($T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified.) All typical values are measured at $T_A = 25^{\circ}C$

Symbol	Parameter	Device	Conditions	Min	Тур	Max	Unit
t _{ON}	Turn–On Time	All Devices	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$	1	6	20	μs
			$I_F = 1.6 \text{ mA}, V_{CC} = 5 \text{ V}, \text{ R}_L = 4.7 \text{ k}\Omega$	-	6	-	
t _{OFF}	Turn–Off Time	All Devices	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$	1	6	20	μs
			I_F = 1.6 mA, V_{CC} = 5 V, R_L = 4.7 $k\Omega$	-	40	-	1
t _R	Output Rise Time (10% to 90%)	All Devices	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$	-	5	_	μs
t _F	Output Fall Time (90% to 10%)	All Devices	I_F = 1.6 mA, V_{CC} = 5 V, R_L = 0.75 $k\Omega$	-	5.5	_	μs
CM _H	Common-Mode Rejection Voltage (Transient Immunity) - Output High	All Devices	$\begin{array}{l} T_{A} = 25^{\circ}C, \ I_{F} = 0 \ \text{mA}, \ V_{O} > 2.0 \ \text{V}, \\ R_{L} = 4.7 \ \text{k}\Omega, \ V_{CM} = 1000 \ \text{V} \ (\text{Note 7}), \\ Figure \ 14 \end{array}$	-	20	-	kV/μs
CML	Common-Mode Rejection Voltage (Transient Immunity) - Output Low	All Devices	$\begin{array}{l} T_{A} = 25^{\circ}C, \ I_{F} = 1.6 \ mA, \ V_{O} < 0.8 \ V, \\ R_{L} = 4.7 \ k\Omega, \ V_{CM} = 1000 \ V \ (Note \ 7), \\ Figure \ 14 \end{array}$	-	20	_	kV/μs

SWITCHING CHARACTERISTICS Apply over all recommended conditions ($T_A = -40^{\circ}C$ to $+125^{\circ}C$ unless otherwise specified).
All typical values are measured at $T_A = 25^{\circ}C$

 Common-mode transient immunity at output high is the maximum tolerable positive dVcm/dt on the leading edge of the common-mode impulse signal, V_{CM}, to assure that the output remains high.

TYPICAL PERFORMANCE CURVES

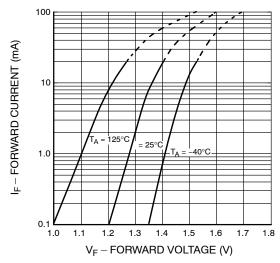


Figure 1. Forward Current vs. Forward Voltage

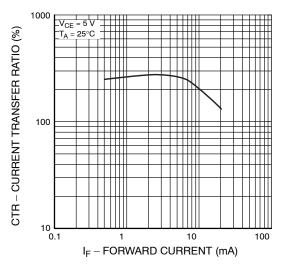
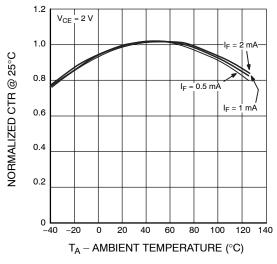
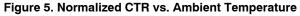




Figure 3. Current Transfer Ratio vs. Forward Current

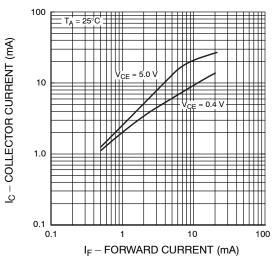


Figure 2. Collector Current vs. Forward Current

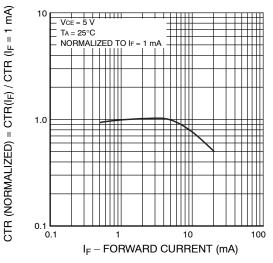


Figure 4. Normalized CTR vs. Forward Current

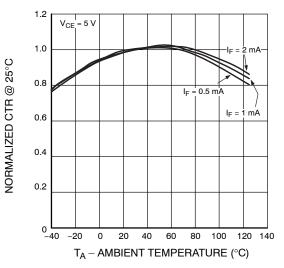
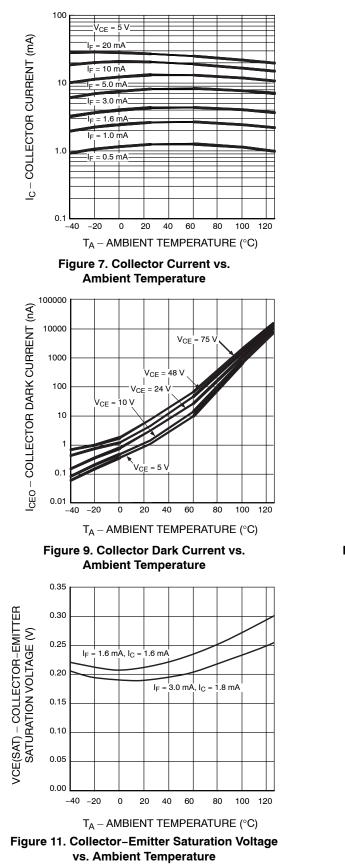



Figure 6. Normalized CTR vs. Ambient Temperature

TYPICAL PERFORMANCE CURVES (continued)

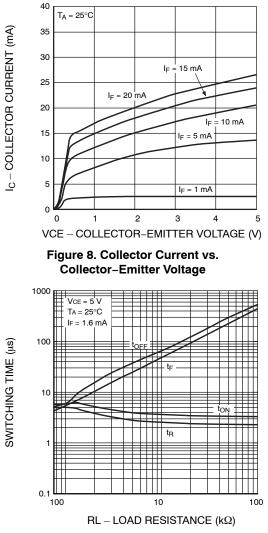
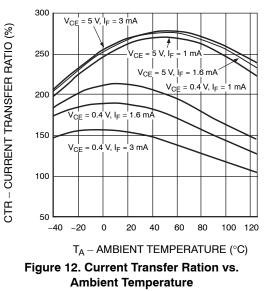



Figure 10. Switching Time vs. Load Resistance

TEST CIRCUITS

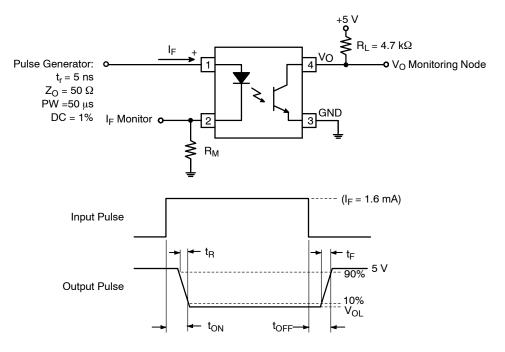


Figure 13. Test Circuit for Propagation Delay, Rise Time, and Fall Time

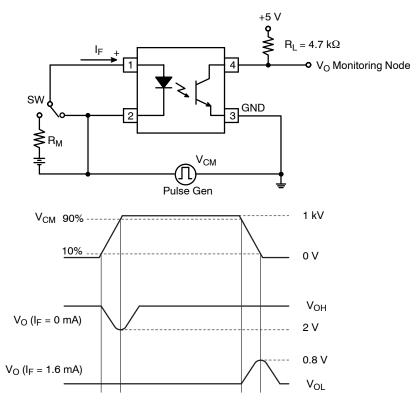


Figure 14. Test Circuit for Instantaneous Common-Mode Rejection Voltage

REFLOW PROFILE

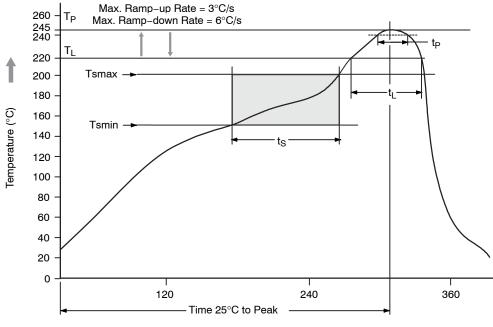


Figure 15. Reflow Profile

Table 1. REFLOW PROFILE

Profile Freature	Pb-Free Assembly Profile
Temperature Minimum (Tsmin)	150°C
Temperature Maximum (Tsmax)	200°C
Time (t _S) from (Tsmin to Tsmax)	60 – 120 seconds
Ramp-up Rate (t _L to t _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 – 150 seconds
Peak Body Package Temperature	245°C +0°C / -5°C
Time (t _P) within 5°C of 245°C	30 seconds
Ramp-down Rate (T _P to T _L)	6°C/second maximum
Time 25°C to Peak Temperature	8 minutes maximum

ORDERING INFORMATION

Part Number	Package	Shipping [†]
FODM8801A	Half Pitch Mini-Flat 4-Pin	150 Units / Tube
FODM8801AR2	Half Pitch Mini-Flat 4-Pin	2500 / Tape & Reel
FODM8801AV	Half Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	150 Units / Tube
FODM8801AR2V	Half Pitch Mini-Flat 4-Pin, DIN EN/IEC60747-5-5 Option	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

8. The product orderable part number system listed in this table also applies to the FODM8801B, FODM8801C products.

OptoHIT is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

onsemi

MFP4 2.5X4.4, 1.27P CASE 100AL **ISSUE O** DATE 31 AUG 2016 0.3-0.51 2 PIN ONE 0.61 52 6.30-7.29 4.40 (Typ) ¢ 83 87 4 4 3 0.55-0.75 2.31 - 2.691.27 2.39 (Max) LAND PATTERN RECOMMENDATION 1.95-2.11 0-0.20 R0.15 (Typ) 2\: R0.15 (Typ) 1.27+/- .127 0.30-0.89 0.18 - 0.251.19 (Typ) NOTES: A) NO STANDARD APPLIES TO THIS PACKAGE B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

DOCUMENT NUMBER:	98AON13485G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	MFP4 2.5X4.4, 1.27P		PAGE 1 OF 1

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>