

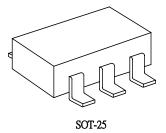
RAIL CURRENT MEASUREMENT IC

GENERAL DESCRIPTION

The **FP120** is a wide input supply and common mode voltage IC for the high side rail current measurement of the power system such as battery charger or switching power supply applications field. IC includes the differential input of amplifier and an NPN transistor emitter output; user could adjusts any gain very easy from three external resistors and read the converting voltage by a simple by a formula at IC output.

The **FP120** uses the SOT-25 package operating in wide power supply and temperature range

FEATURES


Independent power supply voltage: 2.7 to 15V Wide input common-mode voltage: 2.7 to 15V

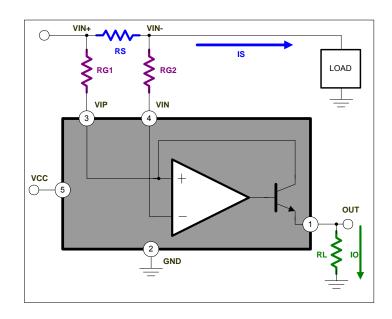
Source current emitter output

'Three resistors gain set-up

'Wide temperature range: 0°C to +85°C

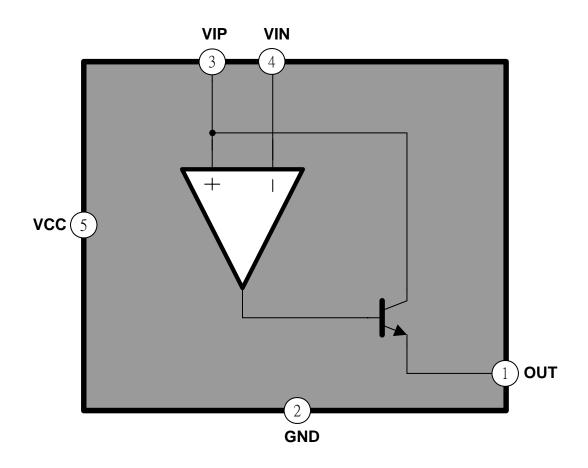
'Package: SOT-25

APPLICATION

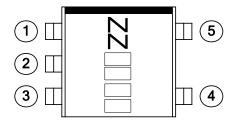

Battery charger

High side rail current detector

'SPS(Adaptor)


Current sense networking system

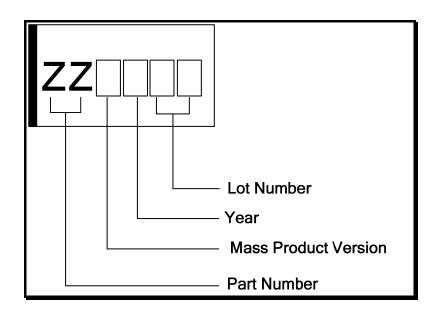
TYPICAL APPLICATION CIRCUITS



FUNCTIONAL BLOCK DIAGRAM

MARK VIEW

PIN DESCRIPTION


Name	No.	1/0	Description	
OUT	1	0	Current detect output	
GND	2	Р	IC ground	
VIP	3	ı	Positive input of differential OPA	
VIN	4	ı	Negative input of differential OPA	
VCC	5	Р	IC power supply	

ORDER INFORMATION

Part Number	Operating Temperature	Package	Description
FP120KR-LF	0°C ~ +85°C	SOT-25	Tape & Reel

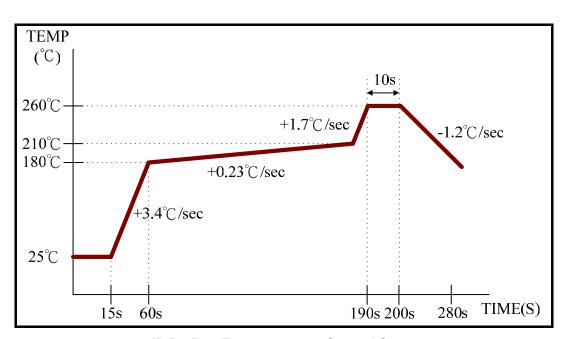
IC DATE CODE DISTINGUISH



For example:

- 1 Year 2001
- 2 Year 2002
- 3 Year 2003 ----- And so on

Lot Number is the last two numbers


For example:

ABSOLUTE MAXIMUM RATINGS

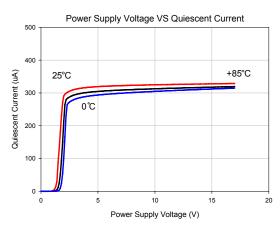
Supply Voltage	0.3V ~ 15V
Common Mode Inputs Voltage	0.3V ~ 15V
Differential Inputs Voltage (V _{IP} – V _{IN})······ –	15V ~ 1.5V
OUT Voltage ·····	0.3V ~ 15V
Operating Temperature············0)°C ~ +85°C
Storage Temperature	C~ +125°C
Junction Temperature ······	+125°C
Power Dissipation (SOT-25, Ta=25°C) ······	····· 220mW
SOT25 Lead Temperature (soldering, 10 sec)······	+260°C

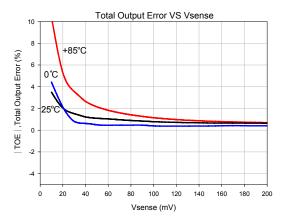
IR Re-flow Temperature vs. Second Curve

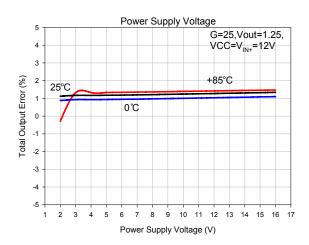
Note:

1. Suggest IR Reflow Soldering Profile Condition

DC ELECTRICAL CHARACTERISTICS

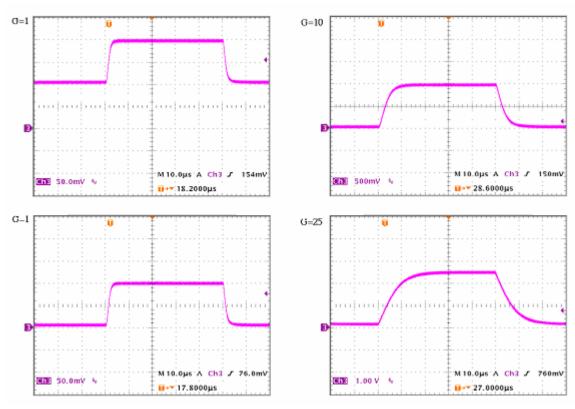

Test conditions: Ta= 0°C ~+85°C , V_{CC} =5V, V_{IN}^+ =12V, R_{OUT} =125K Ω , unless otherwise noted

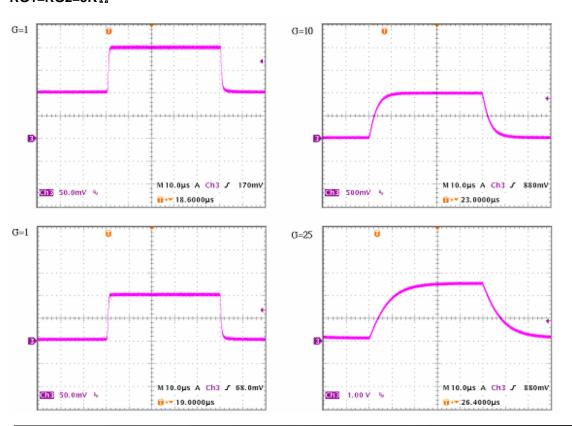

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Full Scale Sense Voltage	V _{SENSE}	V _{SENSE} =V _{IN} ⁺ -V _{IN} ⁻		150	500	mV
Common-Mode Input Voltage	V_{CM}		2.7		15	V
Common-Mode Rejection	CMRR	V _{IN} ⁺ =2.7V to 15V, V _{SENSE} =50mV	100	120		dB
Input Offset Voltage vs temp	V _{OFFSET(ta)}	t _{MIN} to t _{MAX}		4		µV/°C
Input Offset Voltage vs V _{CC}	$V_{OFFSET(vcc)}$	V_{CC} =2.7V to 15V, V_{SENSE} =50mV		2.5	10	μV/V
Input Bias Current	I _{BIAS}	V_{IP}, V_{IN}		2		μΑ
Non-linearity Error	NLE	V _{SENSE} =10mV to 150mV			±1	%
Total Output Error	TOE	V _{SENSE} =100mV			±3	%
Output Impedance	R _{OUT}			1 5		$G\Omega pF$
Voltage Swing to V _{CC}	V_{SCC}			V _{CC} -0.8		V
Voltage Swing to V _{CM}	V_{SCM}			V _{CM} -0.5		V
Bandwidth	BW	R _{OUT} =125KΩ		32		kHz
Settling Time	ts	5V Setp,R _{OUT} =125KΩ		30		μS
Total Output-Current Noise	I _{NOISE}	BW=100KHz		3		nA
Operating Voltage Range	V _{CC}		2.7	_	15	V
Quiescent Current	I _{CC}	V _{SENSE} =0,lo=0		400	600	μΑ
Operating Temperature Range	Ta		0		+85	$^{\circ}\!\mathbb{C}$



TYPICAL CHARACTERISTICS

 $Ta=+25^{\circ}C$, VCC=5V, $V_{IN}=+12V$




TYPICAL CHARACTERISTICS(Cont.)

Ta=+25°C, VCC=5V, V_{IN}=+12V

RG1=RG2=1K Ω

RG1=RG2=5K Ω

DETAILED DESCRIPTION

Figure 7 shows the **FP120** basic application circuit, the load current (I_S) flows from power supply and generates a voltage (V_{IN}^+ - V_{IN}^-) at the sense resistor (R_S).

Assume internal NPN transistor collector current is same as emitter current (I_O) and V_{IP} is very close V_{IN} , the **FP120** transfer function is:

$$I_O = \frac{V_{IN}^+ - V_{IN}^-}{RG1}$$
 ---- (1)

In the circuit of Figure 7, the $(V_{IN}^+-V_{IN}^-)$, is equal to $I_S \cdot R_S$ and the output voltage (OUT) is equal to $I_O \cdot R_L$. The final transfer function for rail current measurement in this application is:

$$V_{OUT} = G * I_S * R_S$$
 ---- (2)

$$G = R_L / RG1 \qquad ---- (3)$$

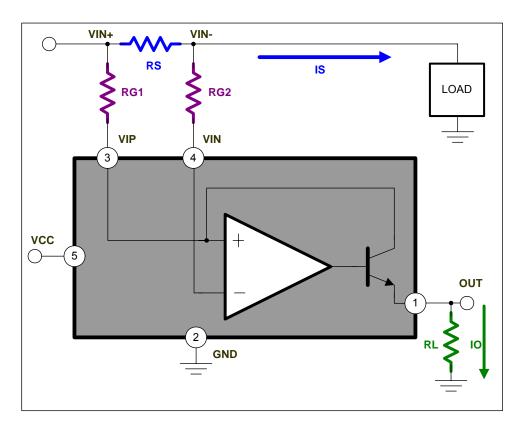


Figure 7 Current measurement circuit

NOTE

- 1. The minimum operating voltages of VCC, VIP and VIN are 2.7V, if these supply voltages are low than 2.7V, the transfer function at output of **FP120** isn't correct.
- 2. Don't force a VIN voltage that is over 15V than VIP, this condition would generate a leakage current and an incorrect voltage at **FP120** output.

APPLICATION NOTE

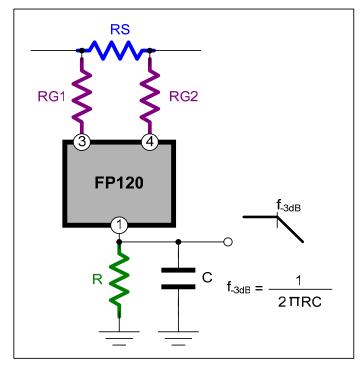
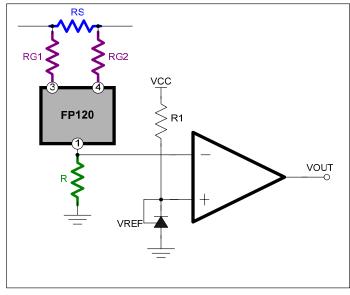


Figure 8 shows a simple method to delay the converting time, when a transient voltage happens at sense resistor (R_s), the output voltage would approach the set point and transfer function would source a current (I_o) to the output, the RC circuit will delay a time during output change. The capacitor is also a filter function when the signal has a frequency response.

Figure 8 Output R-C delay circuit



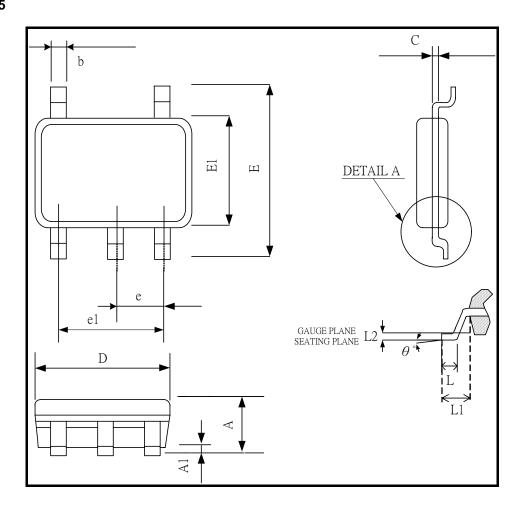

Figure 9 Comparator detection circuit

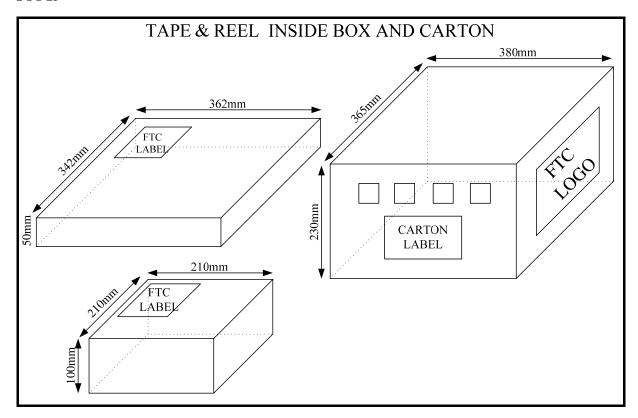
Figure 9 shows a detection circuit using 1.25V reference regulator and comparator. At initial stage, the non-inverting input of comparator which is connecting with 1.25V regulator and it is higher than inverting input, so the comparator output is high until the sense current transfers the IC output voltage is higher than setup voltage 1.25V, the comparator output will change to low.

PACKAGE OUTLINE

SOT-25

SYMBOLS	MIN	MAX
А	1.05	1.35
A1	0.05	0.15
A2	1.00	1.20
b	0.25	0.50
С	0.08	0.20
D	2.70	3.00
E	2.60	3.00
E1	1.50	1.70
е	0.95	BSC.
e1	1.90	BSC.
L	0.30	0.55
L1	0.60	REF.
L2	0.25	BSC.
θ°	0	10

UNIT:mm


NOTE:

1. JEDEC OUTLINE:MO-178 AA •

PACKING SPECIFICATIONS BOX & CARTON DIMENSION

SOT-25

PACKING QUANTITY SPECIFICATIONS

SOT-25
2500 EA / REEL
4 REELS / INSIDE BOX
4 INSIDE BOXES / CARTON

LABEL SPECIFICATIONS

TAPPING & REEL

Feeling Technology Corp

Product:FP120KR-LF

Lot NO: A3311C62-L

D/C: ZZxxxx

Q'ty: 2500

№ 無鉛 Lead Free

CARTON

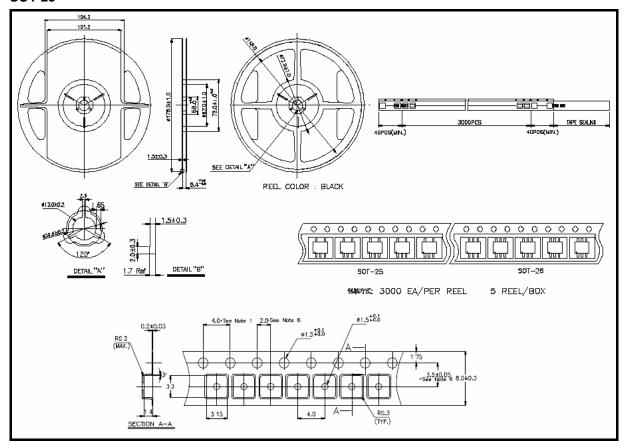
Feeling Technology Corp

Product Type: FP120KR-LF

Lot No: A3311C62-L Date Code: ZZxxxx

Package Type:SOT-25L

Marking Type:Laser


Total Q`ty: 10,000

無鉛 Lead Free

CARRIER TAPE AND REEL DIMENSIONS

SOT-25

