

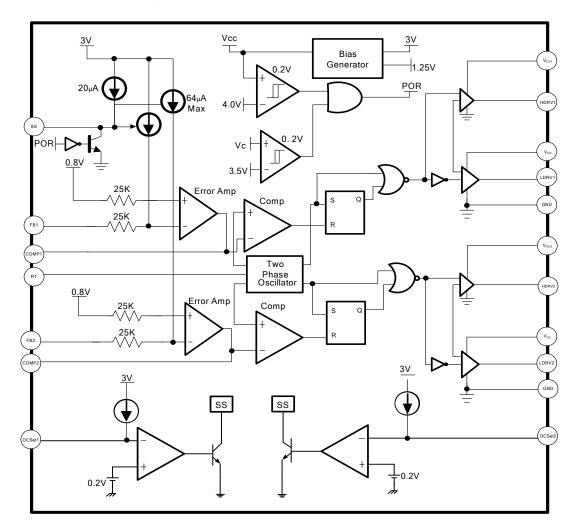
# 2 Channel Synchronous Buck PWM Controller



## **General Description**

The FP5148 is a dual channel synchronous buck switching controller with adjustable over-current protection for DC-DC applications. The FP5148 includes two stage 180° out of phase for driving NMOS, power down under-voltage lockout circuit (UVLO), the inverting input of amplifier connects to a 0.8V precision reference regulator, short circuit and over current shutdown protection circuit (SCP / OCP) and programmable soft start function.

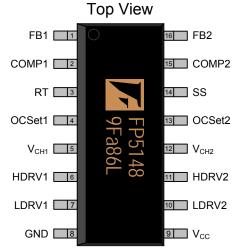
### **Features**


- ➤ Wide Supply Voltage Operating Range: 4.2~15V
- > Precision Reference Voltage: 0.8V ±2%
- > Peak Output Source / Drive Capability: 500mA
- > Totem-pole Output for MOS Driving
- > Programming Oscillation Frequency
- Programmable Soft Start Function (SS)
- OC/SC Protection Function (OCP / SCP)
- > UVLO Protection Function
- > Package: SOP-16L, SOP-16L (EP)

## **Applications**

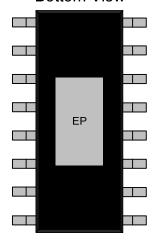
- VGA Card
- > Battery Charger
- Hard Disk Drive
- Multi-Output Application




# **Function Block Diagram**






# **Pin Descriptions**

### **SOP-16L & SOP-16L (EP)**



| Name             | No. | 1/0 | Description                           |  |
|------------------|-----|-----|---------------------------------------|--|
| FB1              | 1   | Ι   | Error Amplifier 1 Inverting Input     |  |
| COMP1            | 2   | 0   | Error Amplifier 1 Compensation Output |  |
| RT               | 3   | 0   | Oscillator Resistor                   |  |
| OCSet1           | 4   | Ι   | Over-current Protection 1             |  |
| V <sub>CH1</sub> | 5   | Р   | Supply Voltage for Output Driver 1    |  |
| HDRV1            | 6   | 0   | Output Driver 1 for High Side NMOS    |  |
| LDRV1            | 7   | 0   | Output Driver 1 for Low Side NMOS     |  |
| GND              | 8   | Р   | IC Ground                             |  |
| V <sub>CC</sub>  | 9   | Р   | IC Power Supply                       |  |
| LDRV2            | 10  | 0   | Output Driver 2 for Low Side NMOS     |  |
| HDRV2            | 11  | 0   | Output driver 2 for High Side NMOS    |  |
| V <sub>CH2</sub> | 12  | Р   | Supply Voltage for Output Driver 2    |  |
| OCSet2           | 13  | Ι   | Over-current Protection 2             |  |
| SS               | 14  | I   | To Connect a Capacitor for Soft-start |  |
| COMP2            | 15  | 0   | Error Amplifier 2 Compensation Output |  |
| FB2              | 16  | I   | Error Amplifier 2 Inverting Input     |  |
| EP               | 17  | Р   | Exposed PAD - must connect to Ground  |  |

### **Bottom View**



This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.



# **Marking Information**

### **SOP-16L & SOP-16L (EP)**



**Halogen Free**: Halogen free product indicator **Lot Number**: Wafer lot number's last two digits

For Example: 132386TB → 86
Internal ID: Internal Identification Code

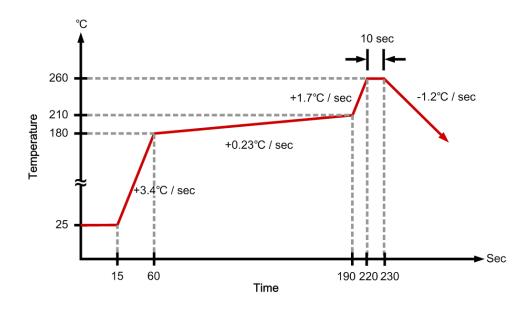
Per-Half Month: Production period indicated in half month time unit

For Example: January  $\rightarrow$  A (Front Half Month), B (Last Half Month)

February → C(Front Half Month), D (Last Half Month)

Year: Production year's last digit




**Ordering Information** 

| Part Number | <b>Operating Temperature</b> | Package      | MOQ    | Description |
|-------------|------------------------------|--------------|--------|-------------|
| FP5148DR-LF | -10°C ~ +85°C                | SOP-16L      | 2500EA | Tape & Reel |
| FP5148XR-LF | -10°C ~ +85°C                | SOP-16L (EP) | 2500EA | Tape & Reel |

**Absolute Maximum Ratings** 

| Parameter                                 | Symbol   | Conditions                          | Min. | Тур. | Max. | Unit |
|-------------------------------------------|----------|-------------------------------------|------|------|------|------|
| Power Supply Voltage                      | $V_{IN}$ |                                     |      |      | 15   | V    |
| Power Supply Voltage for High Side Driver |          | V <sub>CH1</sub> , V <sub>CH2</sub> |      |      | 25   | ٧    |
| Output Source Current                     |          |                                     |      |      | -500 | mA   |
| Output Sink Current                       |          |                                     |      |      | 500  | mA   |
| Allowable Power Dissipation               |          | SOP-16L, T <sub>A</sub> ≦+25°C      |      |      | 830  | mW   |
|                                           |          | SOP-16L (EP), T <sub>A</sub> ≦+25°C |      |      | 650  | mW   |
| Operating Temperature                     |          |                                     | -10  |      | +85  | °C   |
| Storage Temperature                       |          |                                     | -55  |      | +125 | °C   |
| Operating Junction Temperature Range      |          |                                     | +0   |      | +125 | °C   |
| Lead Temperature SOP-16L                  |          | SOP-16L ,soldering, 10 sec          |      |      | +260 | °C   |
| Lead Temperature SOP-16L (EP)             |          | SOP-16L (EP), soldering,<br>10 sec  |      |      | +260 | °C   |

# **Suggested IR Re-flow Soldering Curve**



This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.



**Recommended Operating Conditions** 

| Parameter             | Symbol | Conditions | Min. | Тур. | Max. | Unit |
|-----------------------|--------|------------|------|------|------|------|
| Supply Voltage        |        |            | 4.2  |      | 15   | V    |
| Operating Temperature |        |            | -10  |      | +85  | °C   |

# $\textbf{DC Electrical Characteristics} \text{ (V}_{\text{CC}} = 5\text{V, V}_{\text{CH1}} = \text{V}_{\text{CH2}} = 12\text{V, unless otherwise noted)}$

| Parameter                               | Symbol                                    | Test Conditions                               | Min. | Тур. | Max. | Unit |
|-----------------------------------------|-------------------------------------------|-----------------------------------------------|------|------|------|------|
| Under Voltage Lock-Out Sec              | ion (UVL                                  | O)                                            |      |      |      |      |
| UVLO Threshold Voltage                  | V <sub>CC (UVLO)</sub>                    | Sweep up V <sub>CC</sub>                      | 4.0  | 4.2  | 4.4  | V    |
| Hysteresis Voltage                      | V <sub>CC (HYS)</sub>                     |                                               |      | 0.25 |      | V    |
| UVLO Threshold Voltage                  | (-:/                                      | Sweep up V <sub>CH1</sub> ,V <sub>CH2</sub>   | 3.1  | 3.3  | 3.5  | V    |
| Hysteresis Voltage                      | V <sub>CH1</sub> ,V <sub>CH2</sub>        |                                               |      | 0.25 |      | V    |
| UVLO Threshold Voltage                  | V <sub>FB1</sub> ,V <sub>FB2</sub> (UVLO) | Sweep down V <sub>FB1,</sub> V <sub>FB2</sub> | 0.3  | 0.4  | 0.5  | V    |
| Hysteresis Voltage                      | V <sub>FB1</sub> ,V <sub>FB2</sub> (HYS)  |                                               |      | 0.1  |      | V    |
| Soft Start Section (SS)                 |                                           |                                               |      |      |      |      |
| Input Source Current                    | I <sub>SS</sub>                           | V <sub>SS</sub> =0V                           | -10  | -20  | -30  | μA   |
| Oscillator Section                      |                                           |                                               |      |      |      |      |
| Oscillation Frequency                   | f                                         | RT=30KΩ                                       | 180  | 200  | 220  | KHz  |
| Frequency Change with Voltage           | Δf / ΔV                                   | V <sub>CC</sub> =5V to 14V                    |      | 2    | 10   | %    |
| Prequency Change with Voltage           | ΔΙΙΔν                                     | V <sub>CH1</sub> =V <sub>CH2</sub> =5V to 25V |      | 2    | 10   | 70   |
| Frequency change with temperature       | Δf / ΔV                                   | T <sub>A</sub> = -10°C to 85°C                |      | 5    |      | %    |
| Period Adjustment Section               |                                           |                                               |      |      |      |      |
| Maximum Duty Cycle                      | T <sub>DUTY (ON)</sub>                    | V <sub>FB</sub> =0.7V                         | 85   | 90   |      | %    |
| Minimum Duty Cycle                      | T <sub>DUTY</sub>                         | V <sub>FB</sub> =0.9V                         | 0    |      |      | %    |
| Total Device Section                    |                                           |                                               | _    |      |      |      |
| Dynamic V <sub>CC</sub> Supply Current  | I <sub>CC (DYN)</sub>                     | C <sub>L</sub> =1500pF                        | 2    | 5    | 8    | mA   |
| Static V <sub>CC</sub> Supply Current   | I <sub>CCQ</sub>                          | V <sub>SS</sub> =0V                           | 1    | 3.3  | 6    | mA   |
| Dynamic V <sub>CH1</sub> Supply Current | I <sub>CH1 (DYN)</sub>                    | C <sub>L</sub> =1500pF                        | 2    | 7    | 10   | mA   |
| Static V <sub>CH1</sub> Supply Current  | I <sub>CH1Q</sub>                         | V <sub>SS</sub> =0V                           | 0.5  | 1    | 4.5  | mA   |
| Dynamic V <sub>CH2</sub> Supply Current | I <sub>CH2 (DYN)</sub>                    | C <sub>L</sub> =1500pF                        | 2    | 7    | 10   | mA   |
| Static V <sub>CH2</sub> Supply Current  | I <sub>CH2Q</sub>                         | V <sub>SS</sub> =0V                           | 0.5  | 1    | 4.5  | mA   |

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Website: <a href="http://www.feeling-tech.com.tw">http://www.feeling-tech.com.tw</a>
Rev. 0.9



| Parameter                              | Symbol                             | Test Conditions                          | Min.  | Тур. | Max.  | Unit |
|----------------------------------------|------------------------------------|------------------------------------------|-------|------|-------|------|
| Error Amplifier Section                |                                    |                                          | •     |      |       |      |
| Input Threshold Voltage                | $V_{FB1,}V_{FB2}$                  |                                          | 0.784 | 0.8  | 0.816 | V    |
| V <sub>FB</sub> change with voltage    | ΔV <sub>FB</sub> / ΔV              | V <sub>CC</sub> =5V to 14V               |       | 5    | 20    | mV   |
| V <sub>⊤</sub> change with temperature | ΔV <sub>FB</sub> / ΔT              | T <sub>A</sub> = -10°C to 85°C           |       | 1    |       | %    |
| Input bigg gurrant                     | 1 1                                | V <sub>SS</sub> =3V, V <sub>FB</sub> =1V |       | -0.1 |       | μΑ   |
| Input bias current                     | I <sub>FB1,</sub> I <sub>FB2</sub> | V <sub>SS</sub> =0V, V <sub>FB</sub> =1V |       | -64  |       | μΑ   |
| CH1 Trans-conductance                  | g <sub>m1</sub>                    |                                          | 450   | 600  | 750   | μmho |
| CH2 Trans-conductance                  | <b>G</b> m2                        |                                          | 450   | 600  | 750   | μmho |
| Output Section                         |                                    |                                          |       |      |       |      |
| Rise Time                              | Tr                                 | C <sub>L</sub> =1500pF                   |       | 50   | 100   | ns   |
| Fall Time                              | T <sub>f</sub>                     | C <sub>L</sub> =1500pF                   |       | 50   | 100   | ns   |
| Dead Band Time                         | T <sub>db</sub>                    |                                          | 50    | 100  | 150   | ns   |
| Current Limit Section                  |                                    |                                          |       |      |       |      |
| OC Threshold Set Current               | I <sub>OCSET</sub>                 |                                          | 20    | 30   | 40    | μΑ   |
| OC Threshold Voltage                   | Voc                                | Sweep down                               |       | 0.2  |       | V    |
| OC Comp Off-Set Voltage                | V <sub>OC (OFFSET)</sub>           |                                          | -5    | 0    | +5    | mV   |

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.



## **Function Description**

#### Voltage Reference

A 3.0V regulator operating from  $V_{CC}$  is used to power the internal circuitry of the FP5148. An internal resistive divider provides 0.8V reference for the error amplifier.

### **Error Amplifier**

The error amplifier compares a sample of the dc-dc converter output voltage with the 0.8V reference and generates an error signal for the error comparator. Output voltage of dc-dc converter is setting with the resistor divider using the following equation (see figure 1):

$$V_{OUT} = \left(1 + \frac{R1}{R2}\right) \times 0.8$$

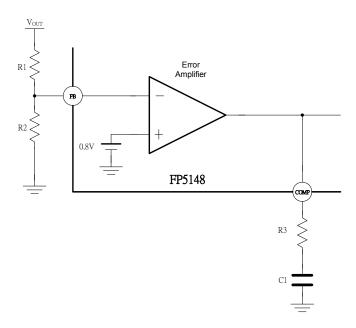



Figure 1 Error Amplifier with Feedback Resistance Divider

#### Oscillator

The oscillator frequency (fosc) can be set from 20KHz to 500KHz by connecting a resistor RT from RT pin to GND.

$$f = \frac{6000}{RT(K\Omega)} (KHz)$$

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Website: <a href="http://www.feeling-tech.com.tw">http://www.feeling-tech.com.tw</a>



#### **Under Voltage Lockout (UVLO)**

FP5148 has a different under voltage lockout voltage for  $V_{CC}$  (typ. 4.2V) and  $V_{CH1}$  /  $V_{CH2}$  (typ. 3.3V). The controller starts to work when supply voltage is higher than the lockout point; otherwise the output drivers of FP5148 are turned off.

#### **Soft Start**

When the  $V_{CC}$  and  $V_{CH1}/V_{CH2}$  of FP5148 are ready, the power on reset (POR) signal is turned off. The internal current source (20µA typ.) will charge the external capacitor, which is connected to the soft-start(SS) pin, to about 3V. Also, another internal current source (64µA max.) will control feedback voltage input of error amplifier and enable output driver for soft-start function. The soft-start timing can be decided by following equation:

$$Tss(ms) = 75 \times Css(uF)$$

FP5148 will be shutdown whenever a voltage under 0.5V is forced on soft-start pin.

#### **Short-Circuit Protection**

FP5148 will be shutdown immediately whenever COMP voltage is lower than 0.4V. The mean is hard to maintain the output voltage during maximum duty cycle under short-circuit, and the PWM output are off until power restart.

#### Output Transistor and Boost Voltage V<sub>C</sub>

FP5148 uses four NMOS and their turn-on VGS voltage near 4.5V, the source voltage of high side NMOS is near  $V_{IN}$ , and it is necessary to supply a boost voltage higher than VIN for high side NMOS gate drive, the following figure explains the relation of MOS gate to source voltage. Application circuits can use different method to solve the boost power supply  $V_{CH1} / V_{CH2}$  for high side driver.

#### (Recommend boost voltage $V_{CH1}/V_{CH2}$ is the sum of $V_{IN}$ and MOS $V_{GS}$ )

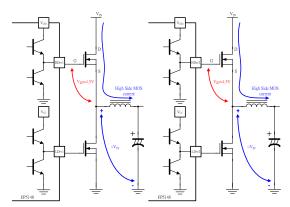
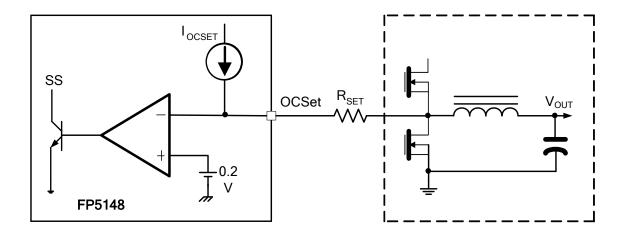



Figure 2 IC Output Stage with NMOS


This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

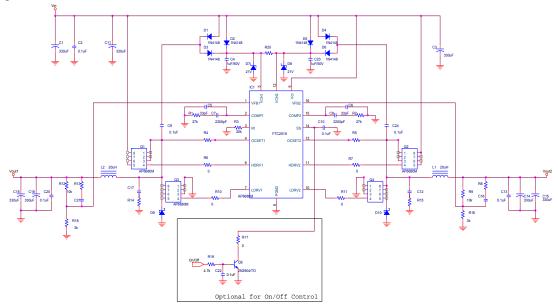
Website: <a href="http://www.feeling-tech.com.tw">http://www.feeling-tech.com.tw</a>



#### **Over-Current Protection**

Over-current protection is achieved with a cycle by cycle scheme. It is performed by sensing current through the  $R_{DS(ON)}$  of low side MOSFET. As shown in the figure below, an external resistor R  $_{SET}$  is connected between OCSet pin and the drain of low side MOSFET (Q2) to set the current limit point. The internal current source develops a voltage across  $R_{SET}$ . When the low side switch is turned on, the inductor current flows through the Q2 and results in a voltage which is given by:




When Voltage  $V_{\text{OCSET}}$  is below 0.2V, the current sensing comparator flips and pull SS pin low. The high side MOSFET is turned off and the low side MOSFET is turned on until the inductor current reduces to below the over current setting value. The critical inductor current can be calculated by

$$Vocset = Iocset \times Rset - Rds(on) \times IL = 0.2$$

$$I_{SET} = I_{L(CRITICAL)} = \frac{R_{SET} \times I_{OCEST} - 0.2}{R_{DS(ON)}}$$



# **Application Information**



Above is a simple application circuit using power supply +5V. The converting voltage is from +5V to +3.3V (dual output), and  $V_{CH1}$  /  $V_{CH2}$  pin voltage are high enough to make high side NMOS turn-on.

The output1 voltage is set by following equation:

$$V_{OUT1} = \left(1 + \frac{R12}{R18}\right) \times V_{REF} = \left(1 + \frac{10K}{3K}\right) \times 0.8V = 3.47V$$

The output2 voltage is set by following equation:

$$V_{OUT2} = \left(1 + \frac{R9}{R16}\right) \times V_{REF} = \left(1 + \frac{10K}{3K}\right) \times 0.8V = 3.47V$$

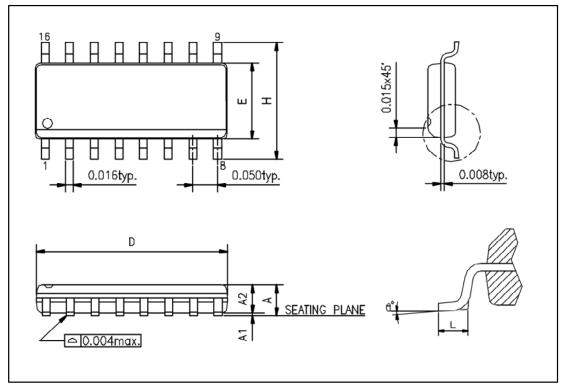
The soft-start time can be calculated by following equation:

$$T_{SS} = 75 \times C10 = 75 \times 0.1 (uF) = 7.5 ms$$

The over current protection that set by R<sub>SET</sub> to limit the max inductance current is:

$$Vocset = Iocset \times Rset - Rds(on) \times IL = 0.2$$

$$I_{SET} = I_{L(CRITICAL)} = \frac{R_{SET} \times I_{OCEST} - 0.2}{R_{DS(ON)}}$$


$$I_{SET1} = I_{L(CRITICAL)} = \frac{R4 \times I_{OCSET} - 0.2}{R_{DS(ON)}} \qquad \qquad I_{SET2} = I_{L(CRITICAL)} = \frac{R5 \times I_{OCSET} - 0.2}{R_{DS(ON)}}$$

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.



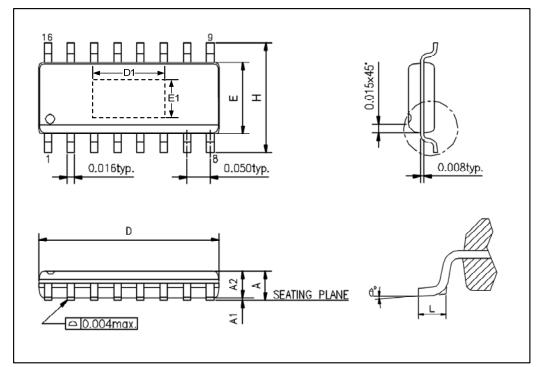
# **Package Outline**

### SOP-16L



**UNIT:** mm

| Symbols | Min. (mm) | Max. (mm) |
|---------|-----------|-----------|
| Α       | 1.346     | 1.752     |
| A1      | 0.101     | 0.254     |
| A2      | 1.244     | 1.651     |
| D       | 9.804     | 10.007    |
| E       | 3.810     | 3.987     |
| Н       | 5.791     | 6.197     |
| L       | 0.406     | 1.270     |
| θ°      | 0°        | 8°        |


#### Note:

- 1. Package dimensions are in compliance with JEDEC outline: MS-012 AC.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E" does not include inter-lead flash or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.



### SOP-16L (EP)



UNIT: mm

| Symbols | Min. (mm) | Max. (mm) |
|---------|-----------|-----------|
| Α       | 1.346     | 1.752     |
| A1      | 0.101     | 0.254     |
| A2      | 1.244     | 1.651     |
| D       | 9.804     | 10.007    |
| Е       | 3.810     | 3.987     |
| Н       | 5.791     | 6.197     |
| L       | 0.406     | 1.270     |
| θ°      | 0°        | 8°        |

### **Exposed PAD Dimensions:**

| Symbols | Min. (mm) | Max. (mm) |
|---------|-----------|-----------|
| E1      | 2.184 REF |           |
| D1      | 4.114 REF |           |

### Note:

- 1. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 2. Dimension "E" does not include inter-lead flash or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.