

Single Operational Amplifier and Voltage Reference

General Description

The FP701 is a single chip composed one op-amp (OPA) with a 1.25V precision voltage reference on non-inverting input and an open collector output. It offers space and low cost in many applications such as the secondary feedback control of power supply, AC to DC converter or adaptor.

The FP701 is designed to used as OCP detector with few external components. The circuit diagram for typical application example is shown as below.

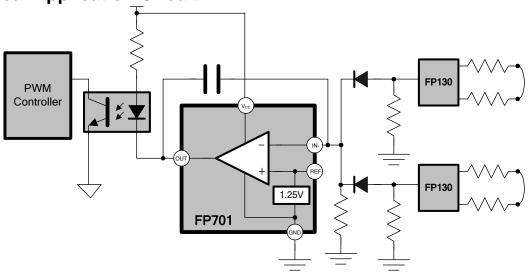
Features

> Fixed Reference Voltage: 1.25V

➤ High Precision Over Temperature: 1%

➤ Wide Operating Voltage From 3.0V~25V

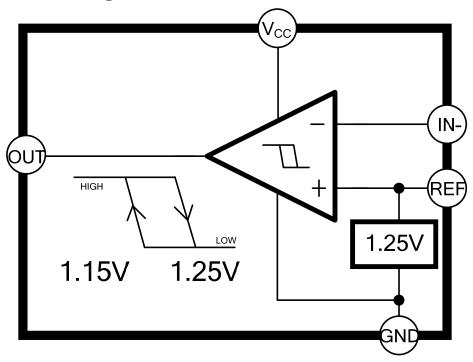
> Sink Current up to 20mA


Low Input Offset Voltage: 1mV

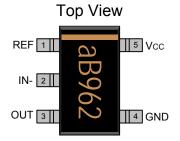
> Package: SOT23-5L

Applications

- > Battery Charger
- > High Side Rail Current Detector
- > SPS (Adaptor)
- Current Sense Networking System


Typical Application Circuit

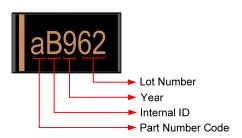
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.



Function Block Diagram

Pin Descriptions

SOT23-5L


Name	No.	1/0	Description		
REF	1	0	1.25V Reference Output OPA Non-Inverting Input		
IN-	2	I	OPA Inverting Input		
OUT	3	0	OPA Open Collector Output		
GND	4	Р	IC Ground		
V _{CC}	5	Р	IC Power Supply		

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Marking Information

SOT23-5L

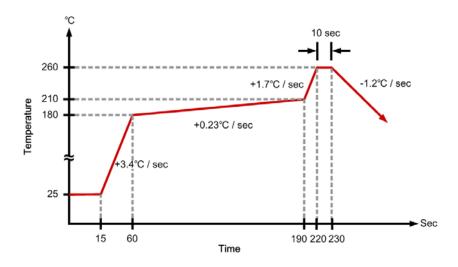
Lot Number: Wafer lot number's last two digits

For Example: $132362TB \rightarrow 62$

Year: Production year's last digit

Internal ID: Internal Identification Code

Part Number Code: Part number identification code for this product. It should be always "a".


Ordering Information

Part Number	Operating Temperature	Package	MOQ	Description
FP701KR-LF	-20°C ~ +85°C	SOT23-5L	2500EA	Tape & Reel

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{cc}				25	V
IN- Input Voltage	Vi		-0.3		V _{cc} -1.8	V
Output Voltage					25	V
Output Sink Current					30	mA
Maximum Junction Temperature					150	°C
Thermal Resistance Junction to Ambient	θ_{JA}				250	°C/W
Power Dissipation (P _D)					250	mW
Operating Temperature Range			-20		+85	°C
Storage Temperature Range			-65		+150	°C
Lead Temperature (Soldering, 10 sec)					+260	°C

IR Re-flow Soldering Curve

Website: http://www.feeling-tech.com.tw

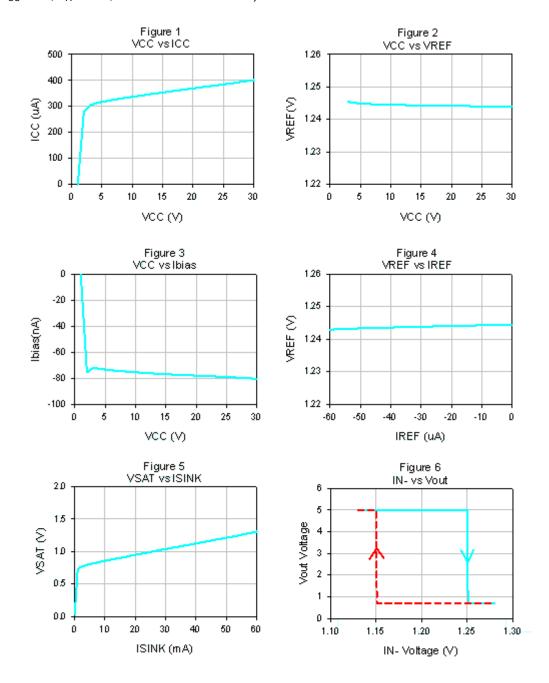
This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Recommended Operating Conditions

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Supply Voltage	V _{cc}		3		25	V
Operating Temperature			-20		+85	°C

DC Electrical Characteristics

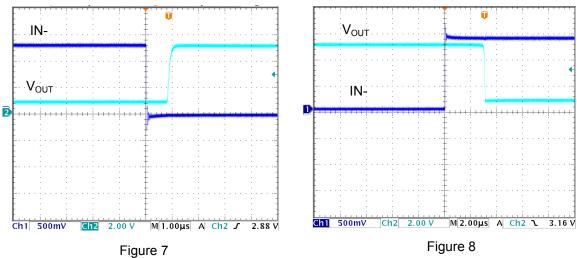
(V_{CC} =12V, T_A = 25°C, unless otherwise noted)


Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Operating Amplifier							
1.05	Vio	T _{AMB} =25°C		1	3	mV	
Input Offset Voltage	VIO	$T_{MIN} \leq T_{AMB} \leq T_{MAX}$			5		
Input Offset Voltage Drift	DV _{io}			7		μV / °C	
IN Input Diag Current		T _{AMB} =25°C		-80	-250	- nA	
IN- Input Bias Current	l _{ib}	$T_{MIN} \leq T_{AMB} \leq T_{MAX}$			-500		
Large Signal Voltage Gain	A_{vd}			50		V / mV	
Output Sink Current	I _{SINK}	V _{IN-} =2V, V _{OUT} =1.2V		30		mA	
Low Level Output Voltage	V _{OL}	V _{IN-} =2V, I _{SINK} =20mA		0.9	1	V	
Output Leakage Current	I _{LEAK}	V _{OUT} =25V, V _{IN-} =0.5V		0.1	1	μA	
Output Switch Hysteresis	HYS.			100		mV	
Voltage Reference							
Deference Veltore	V _{REF}	T _{AMB} =25°C	1.237	1.25	1.263	V	
Reference Voltage		$T_{MIN} \leq T_{AMB} \leq T_{MAX}$	1.225		1.275		
Reference Voltage Deviation Over Temperature Range	ΔV_{REF}	$T_{MIN}\!\leq\!T_{AMB}\!\leq\!T_{MAX}$		10		mV	
Line Regulation		3.0V≦V _{CC} ≦25V		1	3	mV	
Load Regulation		I _{REF} =0μA to 40μA		3	5	mV	
Total Supply Current			-			•	
IC Supply Current	I _{CC}	V _{CC} =25V		0.4		mA	

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Typical Operating Characteristics

(V_{CC} =12V, T_A =25°C, unless otherwise noted)



This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.

Typical Operating Characteristics (V_{CC} =12V, T_A =25 $^{\circ}C$, R_{OUT} =2K)

IN- to V_{OUT} Delay Time

Typical Application

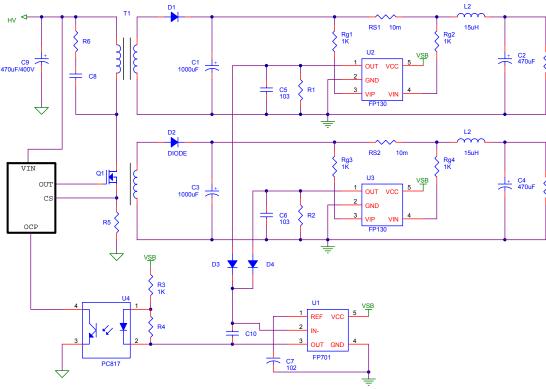
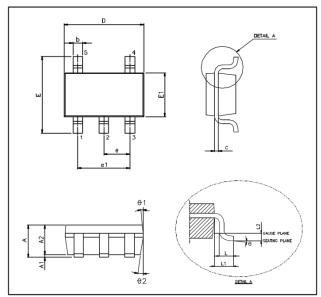



Figure 1 FP701 Over Current Protection Circuits with FP130x2 (Dual Output SPS)

Package Outline

SOT23-5L

UNIT: mm

Symbols	Min. (mm)	Max.(mm)		
A	1.050	1.350		
A1	0.050	0.150		
A2	1.000	1.200		
b	0.250	0.500		
С	0.080	0.200		
D	2.700	3.000		
E	2.600	3.000		
E1	1.500	1.700		
е	0.950	BSC		
e1	1.900 BSC			
L	0.300	0.550		
L1	0.600 REF			
L2	0.250 BSC			
θ°	0°	10°		
θ1°	3°	7°		
θ2°	6°	10°		

Note:

- 1. Package dimensions are in compliance with JEDEC outline: MO-178 AA.
- 2. Dimension "D" does not include molding flash, protrusions or gate burrs.
- 3. Dimension "E1" does not include inter-lead flash or protrusions.

This datasheet contains new product information. Feeling Technology reserves the rights to modify the product specification without notice. No liability is assumed as a result of the use of this product. No rights under any patent accompany the sales of the product.