10-Element **Phototransistor** Card Reader Array

Optoelectronic Products

FPA720 FPA720A

General Description

The FPA720 and FPA720A are 9-element npn Planar phototransistor arrays with exceptionally stable characteristics and high illumination sensitivity. Each transistor is electrically isolated and mounted on 100 mil centers. The case is a plastic compound with transparent resin encapsulation that exhibits stable characteristics under high humidity conditions.

High Illumination Sensitivity Especially Designed For Punched Or Marked Card Reading And Optical Encoder Applications

Absolute Maximum Ratings

Maximum Temperatures and Humidity

-40°C to +100°C Storage Temperature

Operating Temperature -40°C to +85°C Pin Temperature (Soldering, 10 s) 260°C

Relative Humidity at 65°C 85%

Maximum Power Dissipation per Cell

Total Dissipation at $T_C = 25$ °C 200 mW Derate Linearly from 25°C 3.33 mW/°C

Total Dissipation at T_A = 25°C 133 mW Derate Linearly from 25°C

Maximum Voltages and Currents (Note 1)

V_{CE(sus)} Collector-to-Emitter

Sustaining Voltage 20 V l_C

Collector Current 25 mA

2.22 mW/°C

Package Outline

Notes

- 1. Emitter terminal side of phototransistor (sensor array) or anode terminal side of diode (source array) defined by white dot.
- 2. The center of each element is aligned to $\pm .010$ along the length and \pm .005 across the width.
- 3. All dimensions in inches bold and millimeters (parentheses).
- 4. Tolerance unless specified = ± 0.15 (0.381).

Typical Electrical Characteristics

FPA720 FPA720A

Electrica	Characteristics	$T_{\Delta} =$	25°C
------------------	-----------------	----------------	------

Symbol	Characteristic	Min	Тур	Max	Units	Test Conditions
V _{CEO(sus)}	Collector-to-Emitter Sustaining Voltage (Note 7)	20	35		v	I _C = 1.0 mA pulsed
BV _{ECO}	Emitter-to-Collector Breakdown Voltage (Note 7)		7.0		V	$I_{\text{FC}} = 100 \mu\text{A}$
V _{CE(sat)}	Collector-to-Emitter Saturation Voltage		0.16	0.33	V	$I_C = 500 \mu\text{A},$ $H = 20 \text{mW/cm}^2$
CEO	Collector Dark Current / Cell (Note 2) Photo Current, Tungsten Source (Note 3)	200	4.0 750	100	nΑ μΑ	V _{CE} = 5.0 V V _{CF} = 5.0 V,
ICE(It)	Prioto Current, rungsten Source (Note 3)	200	730		μΑ	$H = 5 \text{ mW/cm}^2$
I _{CE(It)}	Photo Current, Tungsten Source (Note 3)		1.75		mA	$V_{CE} = 5.0 \text{ V},$ H = 10 mW/cm ²
I _{CE(It)}	Photo Current, GaAs Source (Note 4)		2.25		mA	$V_{CE} = 5.0 \text{ V},$ H = 5 mW/cm ²
t _r	Light Current Rise Time (Note 6)		4.0		μs	GaAs,
tf	Light Current Fall Time (Note 6)		4.0		μS	$I_{C} = 2.0 \text{ mA},$
			1			$R_L = 100 \Omega$
	•	1	1			$V_{CC} = 5.0 \text{ V}$
S _{min} /S _{max}	Matching Factor (Notes 3 and 5)		}	1		
	FPA720	0.5	0.65	1.0		$V_{CE} = 5.0 \text{ V},$
	FPA720A	0.75	0.85	1.0		$H = 5 \text{ mW/cm}^2$

Notes

- 1. These are steady-state limits. The factory should be consulted on applications involving pulsed or low duty cycle operation.
- 2. Measured with radiation flux intensity of less than 0.1 μW/cm² over the spectrum from 0.1 micron to 1.5 microns.
- 3. Measured at noted irradiance as emitted from a tungsten lamp at a color temperature of 2854°K. The effective photosensitive area is (0.8 mm²). Illuminance (in lumens/ft²) = irradiance H (in mW/cm²) × 20 at a color temperature of 2854°K.
- 4. Measured at an irradiance of 5.0 mW/cm² as emitted from a gallium arsenide diode.
- 5. Matching factor is the ratio of minimum sensitivity to maximum sensitivity of any two cells.
- 6. Rise time is defined as the time required for I_{CE} to rise from 10% to 90% of the peak value. Fall time is defined as the time required for I_{CE} to decrease from 90% to 10% of peak value.
- 7. Rating refers to a high current point where collector-to-emitter voltage is lowest.

Photo Current Characteristics

Photo Current vs Collector Voltage

4

Typical Electrical Characteristic Curves

FPA720 FPA720A

Collector Dark Current vs Temperature

Rise And Fall Time vs Collector Current

Turn-Off Delay Times

Relative Spectral Response

Angular Response

Turn-On Delay Times

Test Circuits

FPA720 FPA720A

Switching Circuit For Rise And Fall Times

Circuit For Turn-On And Turn-Off Delay