FPD87392AXA

SNOSA80C - JUNE 2003 - REVISED APRIL 2013

www.ti.com

FPD87392AXA +3.3V TFT-LCD Timing Controller with Dual LVDS Inputs/Dual RSDS™ Outputs for TFT-LCD Monitor and Notebook (SXGA/SXGA+/UXGA)

Check for Samples: FPD87392AXA

FEATURES

- Input Frequency Range from 30 MHz to 85 MHz
- Support Display Resolutions SXGA (1280x1024), SXGA+ (1400x1050) and UXGA (1600x1200)
- Embedded Gate Array for Custom Panel Timing
- RSDS[™] (Reduced Swing Differential Signaling) Column Driver Bus for Low Power and Reduced EMI
- Drives RSDS™ Column Driver up to 170 Mb/s with an 85 MHz Clock
- 6 or 8 Bit LVDS Dual Pixel Input Interface (FPD-Link)
- Virtual 8-Bit Color Depth in FRC Mode
- Flexible RSDS™ Data Output Mapping for Bottom or Top Mount
- Supports 1 and 2 Line Inversion Mode for RVS Output
- Supports Graphics Controllers with Spread Spectrum Interface for Lower EMI
- Free Run Mode Function
- Fail-Safe Function in DE Mode (Bonding Option)
- Supports DE Mode and SYNC Only Mode (Bonding Option)
- Power-On-Reset Support
- CMOS Circuitry Operates from a 2.7V to 3.6V Supply
- Operation Frequency: 54 MHz (Max) @ V_{CC}: 2.7
 ~ 3.0V
- Operation Frequency: 85 MHz (Max) @ V_{CC}: 3.0
 ~ 3.6V
- 128 TQFP Package with Body Size 14mm x 14mm x 1.0mm, 0.4mm Pitch

DESCRIPTION

The FPD87392AXA Panel Timing Controller is an integrated FPD-Link + RSDS™ + TFT-LCD Timing Controller. The logic architecture is implemented using standard and default timing controller functionality based on an Embedded Gate Array. The device is reconfigurable to the needs of a specific application by providing user-defined specifications or customer supplied VHDL/Verilog code.

The FPD87392AXA is a timing controller that combines an LVDS dual pixel input interface with TI's Reduced Swing Differential Signaling (RSDS™) output column driver interface for SXGA, SXGA+ and UXGA resolutions. It resides on the TFT-LCD panel and provides the data buffering and control signal generation. The RSDS™ data path to the column driver contributes toward lowering radiated EMI and reduced system dynamic power consumption. The RSDS™ dual 12 pair differential bus conveys up to 24-bit color data for SXGA/SXGA+/UXGA panels when using VESA 60Hz standard timing.

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

M

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

RSDS is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

System Diagram

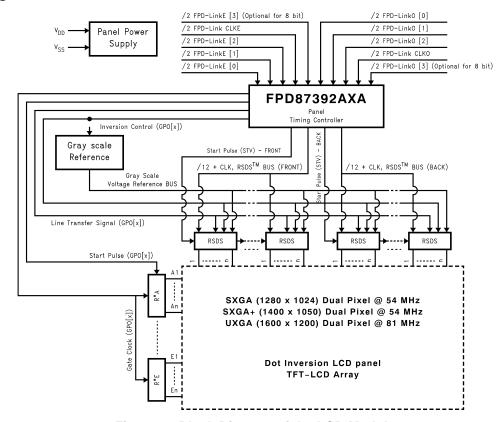


Figure 1. Block Diagram of the LCD Module

Submit Documentation Feedback

www.ti.com

Block Diagram

INSTRUMENTS

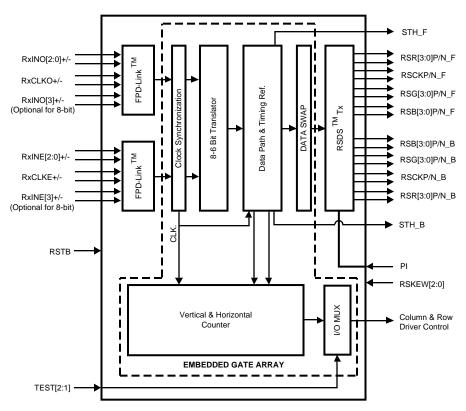


Figure 2. Block Diagram

Copyright © 2003–2013, Texas Instruments Incorporated

Submit Documentation Feedback

www.ti.com

Functional Description

DUAL FPD-LINK RECEIVERS

The LVDS based FPD-Link Receivers inputs video data and control timing through 8 pairs of LVDS channels plus 2 pairs of LVDS clocks to provide 24-bit color or use only 6 pairs of LVDS channels plus 2 LVDS clocks to provide 18-bit color. The video data is converted to a parallel data stream and routed to the 8-6 bit translator.

SPREAD SPECTRUM SUPPORT

The FPD-Link receiver supports graphics controllers with Spread Spectrum interfaces for reducing EMI. The Spread Spectrum methods supported are Center and Down Spread. A maximum of 2% total is supported at a frequency modulation of 100kHz maximum.

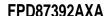
8-6 BIT TRANSLATOR

8-bit data is reduced to a 6-bit data path via a time multiplexed dithering technique or simple truncation of the LSBs. This function is enabled via the input control pins.

DATAPATH BLOCK AND RSDS TRANSMITTER

6(8)-bit video data (RGB) is input to the Datapath Block supports up to an 85 MHz dual pixel rate. The data is delayed to align the Column Driver Start Pulse (STH) with the Column Driver data. The dual data bus (RSR[3:0]P/N, RSG[3:0]P/N, RSB[3:0]P/N) outputs at a 170 MHz rate on 24 differential output channels. The clock is output on the (Front, Back) RSCKP/N differential pairs. The RSDS Column Drivers latch data on both positive and negative edges of the clock. The swap function provides flexible RSDS data output mappings for either Top or Bottom mount. The RSDS output setup/hold timings are also adjustable through the RSKEW[2:0] input pins.

TIMING CONTROL FUNCTION


The Timing Control function generates control to Column Drivers, Row Drivers, and power supply. The GPOs (General Purpose Outputs) provide for CD latch pulse, REV, and Row Driver control generation. The General Purpose Outputs allow the user to generate control anywhere within the frame data. Standard Row Driver interface or Custom Row Driver interfaces can be implemented with the GPOs (General Purpose Outputs).

RSDS OUTPUT VOLTAGE CONTROL

The RSDS output voltage swing is controlled through an external load resistor connected to the RPI pin. The RSDS output signal levels can be adjusted to suit the particular application. This is dependent on overall LCD module design characteristics such as trace impedance, termination, etc. The RSDS output voltage is inversely related to the RPI value. Lower RPI values will increase the RSDS output voltage swing and consequently overall power consumption will also increase.

Product Folder Links: FPD87392AXA

www.ti.com

SNOSA80C -JUNE 2003-REVISED APRIL 2013

REVISION HISTORY

CI	ges from Revision B (April 2013) to Revision C	
•	Changed layout of National Data Sheet to TI format	4

Product Folder Links: FPD87392AXA

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

power.ti.com

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Communications and Telecom **Amplifiers** amplifier.ti.com www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP **Energy and Lighting** dsp.ti.com www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical logic.ti.com Logic Security www.ti.com/security Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

Power Mgmt

OMAP Applications Processors www.ti.com/omap **TI E2E Community** e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity