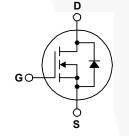

FQA7N80C_F109 N-Channel QFET[®] MOSFET 800 V, 7 A, 1.9 Ω


Features

- + 7.0 A, 800 V, ${\sf R}_{\sf DS(on)}$ = 1.9 Ω (Max.) @ V_{\sf GS} = 10 V, ${\sf I}_{\sf D}$ = 3.5 A
- Low Gate Charge (Typ. 27nC)
- Low Crss (Typ. 10pF)
- 100% Avalanche Tested
- RoHS Compliant

Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter		FQA7N80C_F109	Unit	
V _{DSS}	Drain-Source Voltage		800	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		7.0	А	
	- Continuous (T _C = 100°C)		4.4	А	
I _{DM}	Drain Current - Pulsed	(Note 1)	28.0	А	
V _{GSS}	Gate-Source Voltage		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy		580	mJ	
I _{AR}	Avalanche Current	(Note 1)	7.0	А	
E _{AR}	Repetitive Avalanche Energy	(Note 1)	30	mJ	
dv/dt	Peak Diode Recovery dv/dt		4.0	V/ns	
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		198	W	
	- Derate above 25°C		1.75	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C	
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	FQA7N80C_F109	Unit	
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	0.63	°C/W	
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Typ.	0.24	°C/W	
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.	40	°C/W	

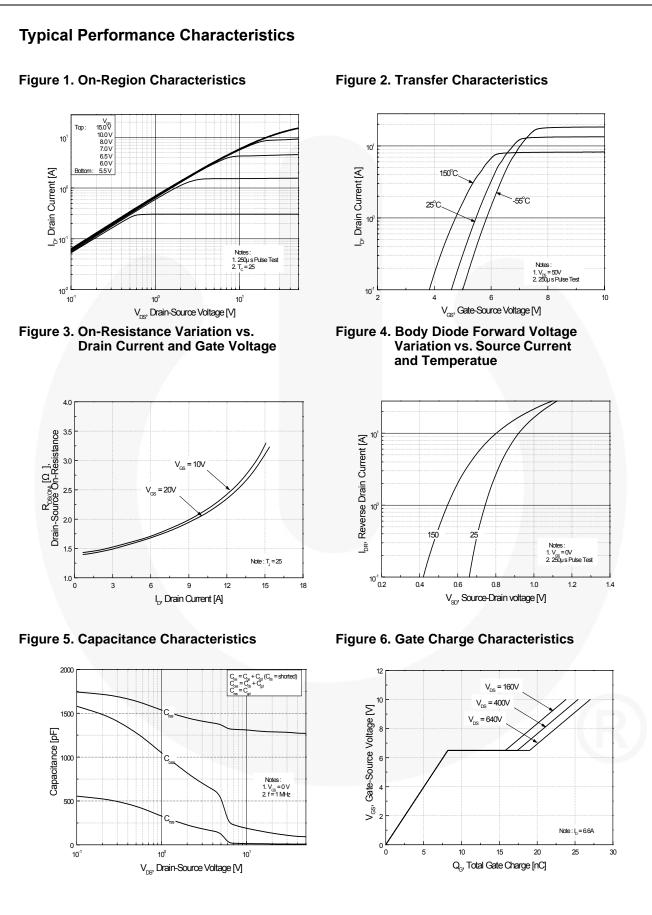
Т
Q
≥
Ź
~
N80C
õ
Ľ
Ţ
õ
õ
1
I
Ζ
Å
¥
a
Ξ
٦ ۲
annel (
FE
П
-
Š
SOM
H
Ш

Package Marking and Ordering Information

Part Number	Top Mark	Package	Packing Method	Reel Size	Tape Width	Quantity
FQA7N80C_F109	FQA7N80C	TO-3PN	Tube	N/A	N/A	30 units

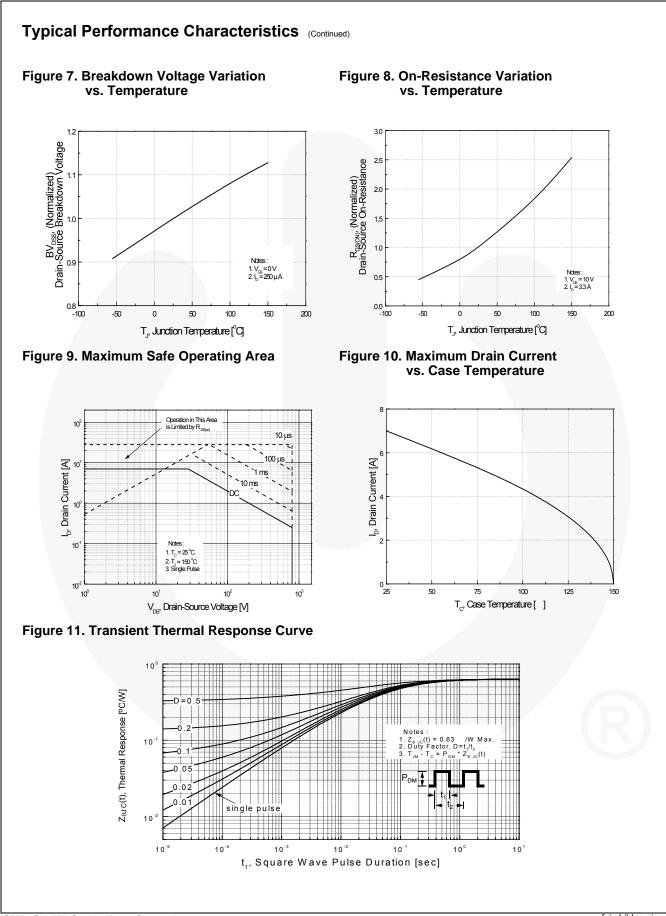
Electrical Characteristics T_c = 25°C unless otherwise noted.

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Off Charac	teristics			1		1
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = 250 μA	800			V
$\Delta BV_{DSS}/\Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		0.93		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} = 800 V, V_{GS} = 0 V			10	μA
		V_{DS} = 640 V, T_{C} = 125°C			100	μA
I _{GSSF}	Gate-Body Leakage Current, Forward	V_{GS} = 30 V, V_{DS} = 0 V	-		100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
On Charact	eristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	3.0		5.0	V
R _{DS(on)}	Static Drain-Source On-Resistance	V _{GS} = 10 V, I _D = 3.5 A		1.57	1.9	Ω
9 _{FS}	Forward Transconductance	V _{DS} = 50 V, I _D = 3.5 A		5.6		S
Dynamic Cl	haracteristics					
C _{iss}	Input Capacitance	V_{DS} = 25 V, V_{GS} = 0 V,		1290	1680	pF
C _{oss}	Output Capacitance	f = 1.0 MHz		120	155	pF
C _{rss}	Reverse Transfer Capacitance			10	13	pF
Switching C	Characteristics					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 6.6\text{A},$		35	80	ns
t _r	Turn-On Rise Time	- R _G = 25 Ω 		100	210	ns
t _{d(off)}	Turn-Off Delay Time			50	110	ns
t _f	Turn-Off Fall Time			60	130	ns
Qg	Total Gate Charge	V _{DS} = 640 V, I _D = 6.6A,		27	35	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		8.2		nC
Q _{gd}	Gate-Drain Charge	(Note 4)		11		nC
Drain-Sourc	ce Diode Characteristics and Maximum Ratings	3				
I _S	Maximum Continuous Drain-Source Diode Forward Current				7.0	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current				28.0	Α
V _{SD}	Drain-Source Diode Forward Voltage	V _{GS} = 0 V, I _S =7.0 A			1.4	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, I _S = 6.6 A,		650		ns
Q _{rr}	Reverse Recovery Charge	dI _F / dt = 100 A/μs		7.0		μC

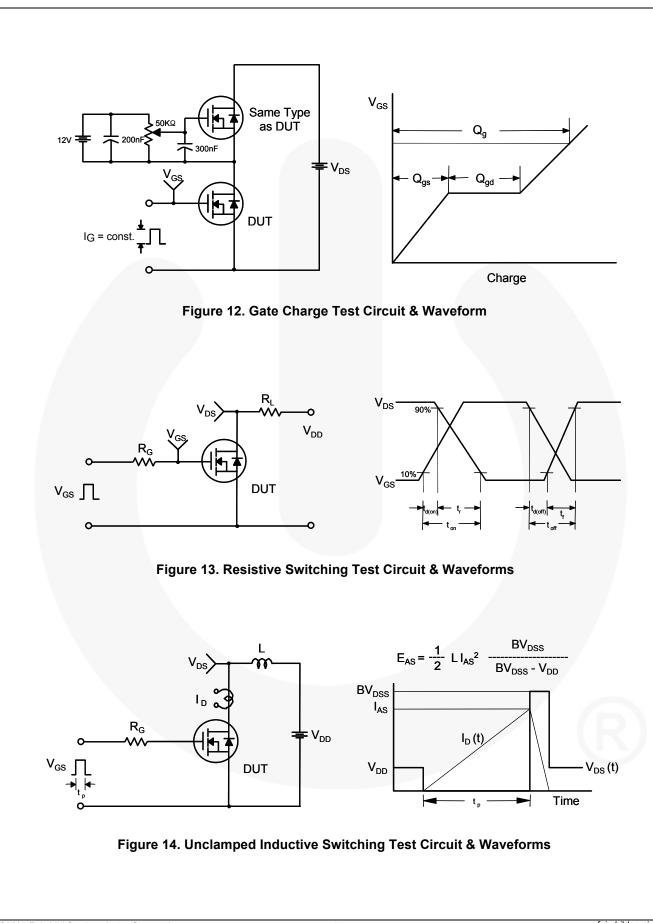

Notes:

1. Repetitive rating: pulse-width limited by maximum junction temperature.

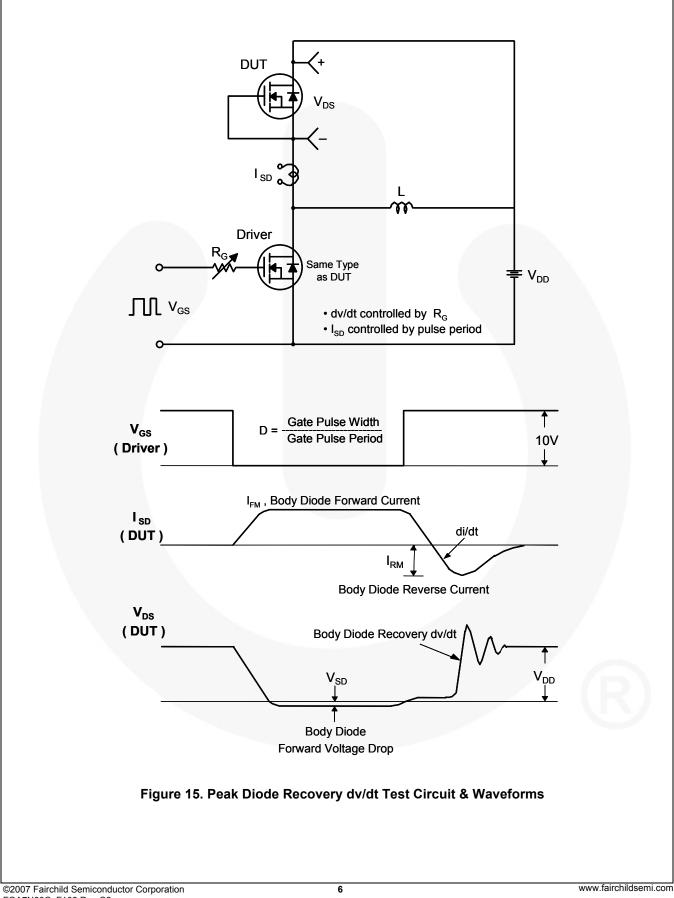
2. L = 22.2 mH, I_{AS} = 7 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C.

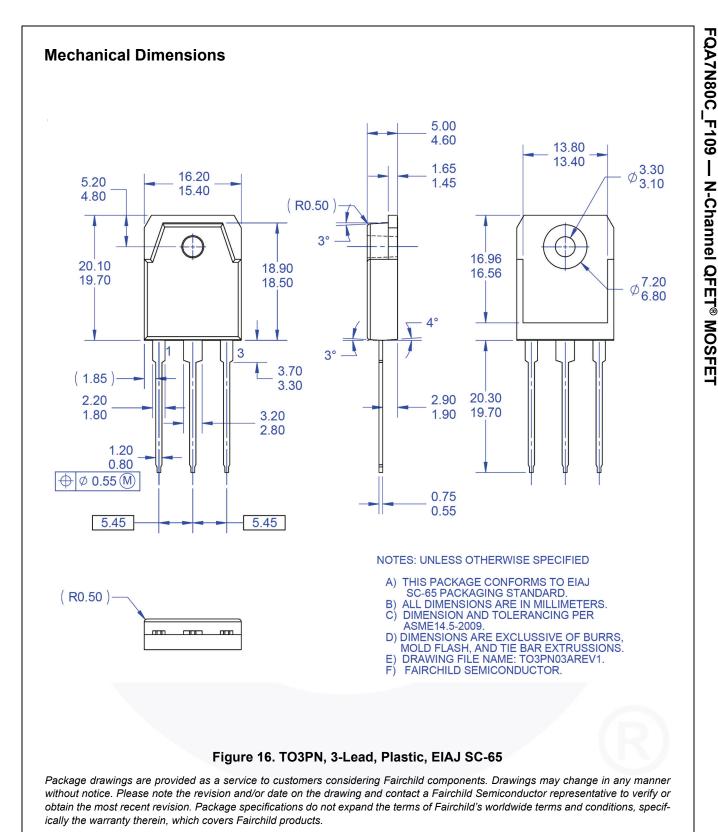

 $3.I_{SD} \leq 8.4$ A, di/dt ≤ 200 A/µs, $V_{DD} \leq BV_{DSS},$ starting T_J = $25^\circ C.$

4. Essentially independent of operating temperature typical characteristics.

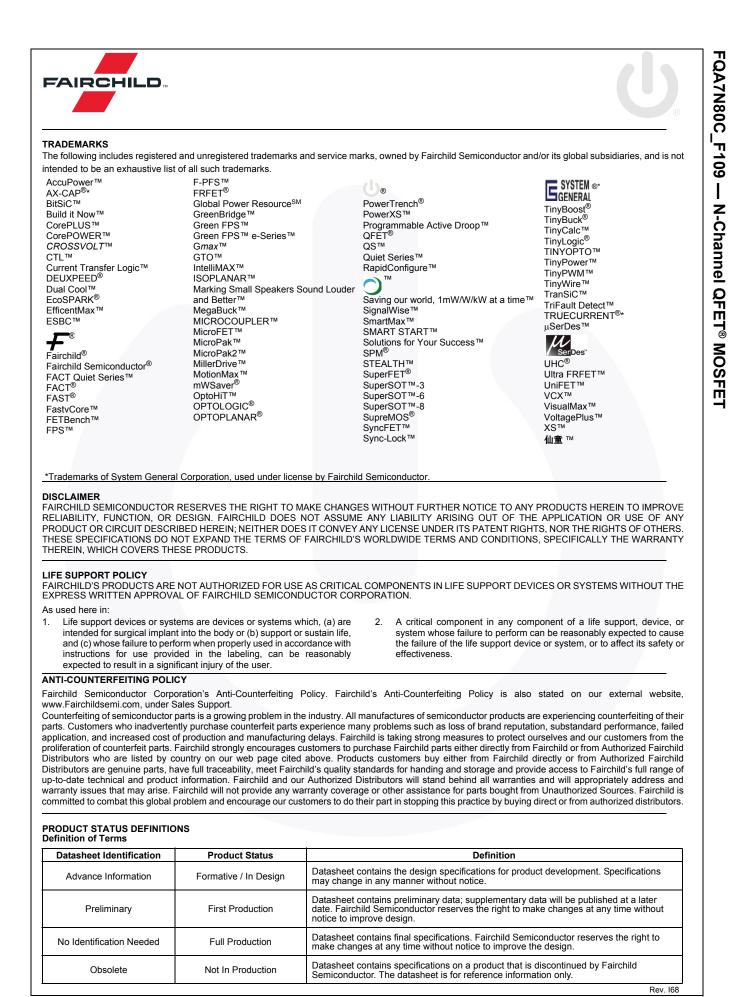

©2007 Fairchild Semiconductor Corporation FQA7N80C_F109 Rev C2

www.fairchildsemi.com




4

FQA7N80C_F109 — N-Channel QFET[®] MOSFET


FQA7N80C_F109 — N-Channel QFET® MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3PN-003

