

ON Semiconductor®

FQB25N33TM-F085 330V N-Channel MOSFET

Features

- 25A, 330V, $R_{DS(on)} = 0.23\Omega$ @ $V_{GS} = 10V$
- Low gate charge (typical 58nC)
- Low Crss (typical 40pF)
- · Fast switching
- 100% avalanche tested
- · Improved dv/dt capability
- · Qualified to AEC Q101
- · RoHS Compliant

General Description

These N-Channel enhancement mode power field effect transistors are produced using ON Semiconductor's proprietary, planar stripe, DMOS technology.

This advanced technology has been especially tailored to minimized on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficient switched mode power supplies, active power factor correction, electronic lamp ballast based on half bridge topology.

Absolute Maximum Ratings

Symbol	Parameter		Ratings	Units
V_{DSS}	Drain-Source Voltage		330	V
	Drain Current - Continuous ($T_C = 25^{\circ}C$)		25	Α
ID	- Continuous (T _C = 100°C)		16.0	Α
I_{DM}	Drain Current - Pulsed	(Note 1)	100	Α
V_{GSS}	Gate -Source Voltage		±30	V
E _{AS}	Single Pulse Avalanche Energy	(Note 2)	370	mJ
I _{AR}	Avalanche Current	(Note 1)	25	Α
E _{AR}	Repetitive Avalance Energy	(Note 1)	37	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
	Power Dissipation (T _A = 25°C) *		3.1	W
P_{D}	Power Dissipation (T _C = 25°C)		250	W
	- Derate above 25°C		2.0	W/°C
T _J , T _{STG}	Operating and Storage Temperature		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8 from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	Ratings	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.5	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient *	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	62.5	°C/W

* When mounted on the minimum pad size recommended (PCB Mount)

Package Marking and Orde	ering information
--------------------------	-------------------

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FQB25N33	FQB25N33TM-F085	D2-PAK	330mm	24mm	800

Test Conditions

Min

Тур

Max Units

Electrical Characteristics $T_C = 25^{\circ}C$ unless otherwise noted

Parameter

Off Chara	cteristics					
B _{VDSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	330			V
$\Delta B_{VDSS/} \ \Delta T_J$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		0.34		V/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 330V, V_{GS} = 0V$ $V_{DS} = 264V, T_{C} = 125^{\circ}C$			10	μА
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 30V, V_{DS} = 0V$			100	nA
I _{GSSR}	Gate-Body Leakage Current, Forward	$V_{GS} = -30V, V_{DS} = 0V$			-100	nA

On Characteristics

Symbol

$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	3.0		5.0	V
R _{DS(on)}	Drain to Source On Resistance	$V_{GS} = 10V, I_D = 12.5A,$		0.18	0.23	Ω
9 _{FS}	Forward Transonductance	$V_{DS} = 50V, I_D = 12.5A, (Note 4)$		1		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V 05V V 0V	 1510	2010	pF
Coss	Output Capacitance	V _{DS} = 25V, V _{GS} = 0V, f = 1.0MHz	 290	385	pF
C _{rss}	Reverse Transfer Capacitance	1 - 1.00012	 40	60	pF

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		 20	35	ns
t _r	Turn-On Rise Time	$V_{DD} = 165V, I_D = 25A$	 100	160	ns
t _{d(off)}	Turn-Off Delay Time	$R_{GS} = 25\Omega$ (Note 4, 5)	 90	145	ns
t _f	Turn-Off Fall Time	(11010 1, 0)	 70	110	ns
$Q_{g(TOT)}$	Total Gate Charge	$V_{DS} = 297V, I_D = 25A,$	 58	75	nC
Q _{gs}	Gate to Source Gate Charge	V _{GS} = 15V,	 11.2		nC
Q_{gd}	Gate to Drain Charge	(Note 4, 5)	 21		nC

Drain-Source Diode Characteristics and Maximum Ratings

Is	Maximum Continuous Drain-Source Diode Forward Current			 	25	Α
I _{SM}	Maximum Pulsed Drain-Source Diode Forward Current			 	100	Α
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0$, $I_{S} = 25A$		 	1.5	V
t _{rr}	Reverse Recovery Time	$V_{GS} = 0$, $I_S = 25A$,		 275		ns
Q _{rr}	Reverse Recovery Charge	$dI_F/dt = 100A/\mu s$	(Note 4)	 3.6		μС

- **Notes:**1: Repetitive Rating : Pluse width Limited by maximum junction temperature 2: L = 1.79mH, $I_{AS} = 25A$, $V_{DD} = 50V$, $R_G = 25C$, Starting $T_J = 25^\circ C$ 3: $I_{SD} \le 25A$, $di/dt \le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^\circ C$ 4: Pulse Test : Pulse width $\le 300\mu s$, Duty cycle $\le 2\%$ 5: Essentially independent of operating temperature

Typical Performance Characteristics

Figure 1. On-Region Characteristics

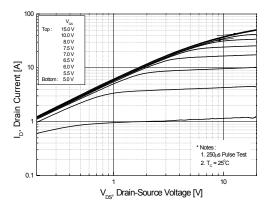


Figure 3. On-Resistance Variation vs.

Drain Current and Gate Voltage

Figure 2. Transfer Characteristics

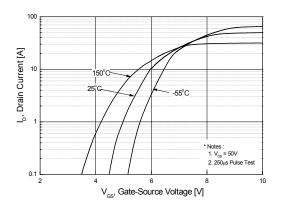


Figure 4. Body Diode Forward Voltage Variation vs. Source Current and Temperatue

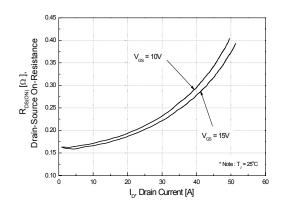


Figure 5. Capacitance Characteristics

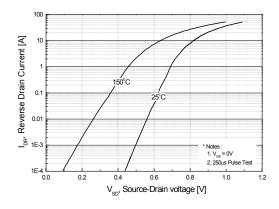
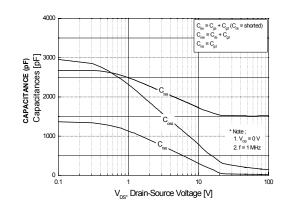
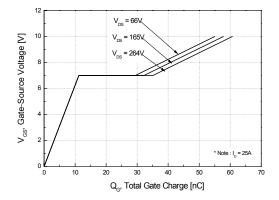




Figure 6. Gate Charge Characteristics

Typical Performance Characteristics (Continued)

Figure 7. Breakdown Voltage Variation vs. Temperature

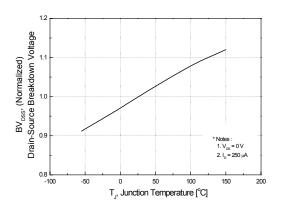


Figure 8. On-Resistance Variation vs. Temperature

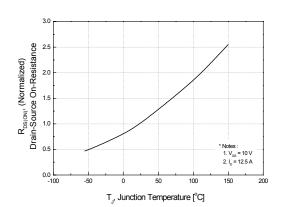
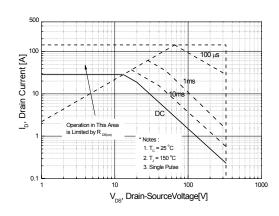
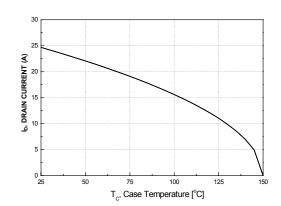
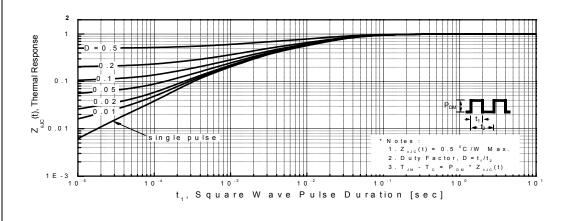
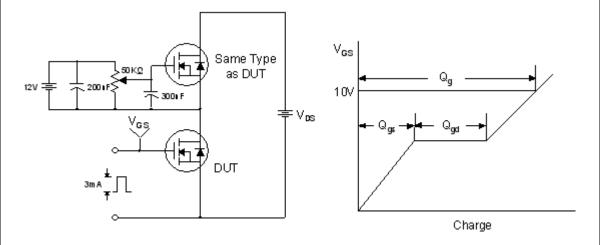
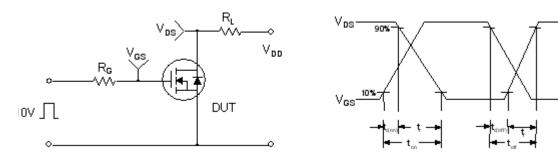
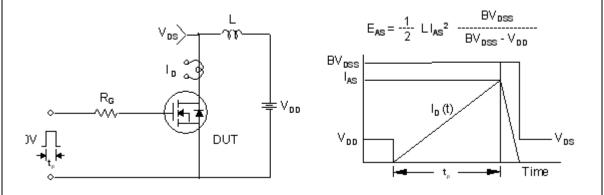



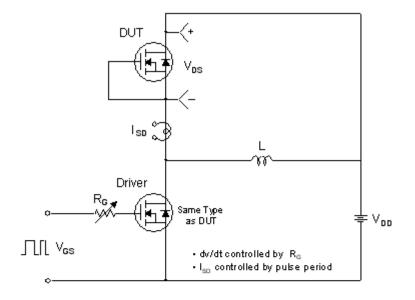
Figure 9. Maximum Safe Operating Area

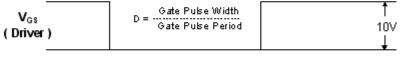
Figure 10. Maximum Drain Current vs. Case Temperature

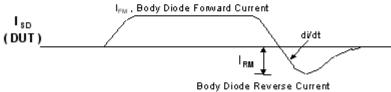




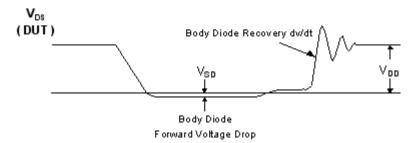

Figure 11. Transient Thermal Response Curve


Gate Charge Test Circuit & Waveform


Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching Test Circuit & Waveforms



Peak Diode Recovery dv/dt Test Circuit & Waveforms

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative