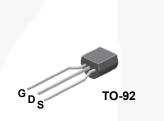
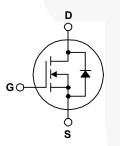


FQN1N60C N-Channel QFET[®] MOSFET


600 V, 0.30 A, 11.5 Ω


Description

This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power factor correction (PFC), and electronic lamp ballasts.

Features

- 0.30 A, 600 V, $R_{DS(on)}$ = 11.5 Ω (Max.) @ V_{GS} = 10 V, I_D = 0.15 A
- Low Gate Charge (Typ. 4.8 nC)
- Low Crss (Typ. 3.5 pF)
- 100% Avalanche Tested

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FQN1N60CTA	Unit	
V _{DSS}	Drain-Source Voltage			600	V	
I _D	Drain Current	- Continuous (T _C = 25°C)		0.3	A	
		- Continuous (T _C = 100°C)		0.18	А	
I _{DM}	Drain Current - Pulsed (Note 1)			1.2	A	
V _{GSS}	Gate-Source Voltage			± 30	V	
E _{AS}	Single Pulsed Avalanche Energy (Note 2)			33	mJ	
I _{AR}	Avalanche Current (Note			0.3	A	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	0.3	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	4.5	V/ns	
P_D Power Dissipation (T _A = 25°C)			1	W		
	Power Dissipati	on (T _L = 25°C)		3	W	
		- Derate above 25°C		0.02	W/°C	
T _J , T _{STG}	Operating and Storage Temperature Range			-55 to +150	°C	
Τ _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 5 Seconds.			300	°C	

Thermal Characteristics

Symbol	Parameter	FQN1N60CTA	Unit		
$R_{ ext{ heta}JL}$	Thermal Resistance, Junction-to-Lead, Max.		50	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient, Max.	(Note 5b)	140	°C/W	

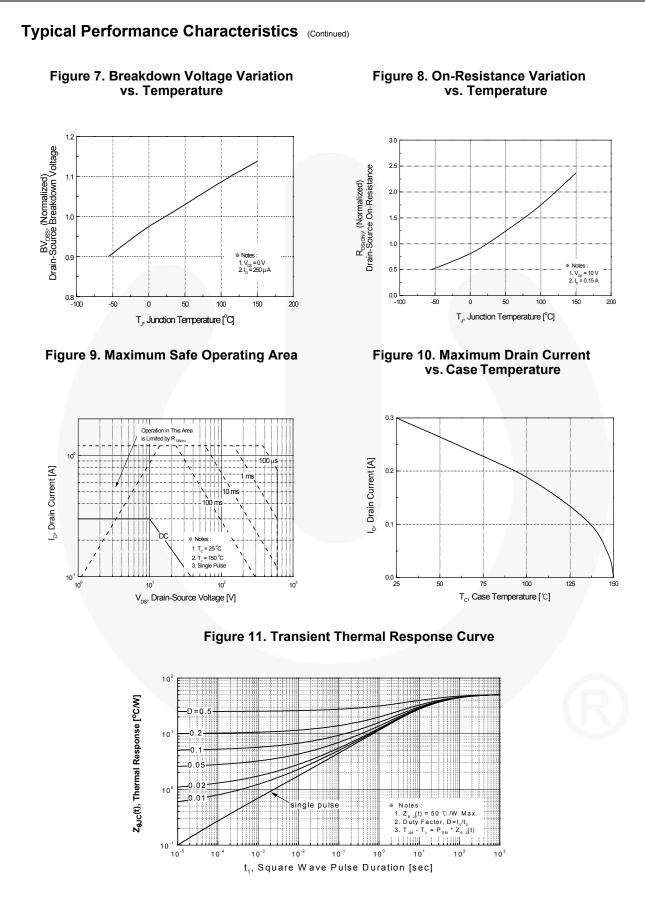
1

Part Number		Top Mark	Pac	kage	Packing Method	Reel	Size	Tape W	lidth	Quantity	
FQN1N6	0CTA	1N60C	тс)-92	AMMO		A	N/A		2000 units	
Electrica	l Char	racteristics T _c =2	25°C unless	otherwise	noted.				1		
Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Unit	
Off Characte	ristics										
BV _{DSS}	Drain-S	ource Breakdown Voltag	e	V_{GS} = 0 V, I _D = 250 µA		600			V		
ΔBV _{DSS} /ΔTJ	Breakdown Voltage Temperature Coefficient		9	I_D = 250 µA, Referenced to 25°C			0.6		V/°C		
DSS	Zero Ga	ate Voltage Drain Current	t	$V_{DS} = 0$	600 V, V _{GS} = 0 V				50	μA	
				$V_{DS} = 4$	480 V, T _C = 125°C				250	μA	
GSSF	Gate-Bo	ody Leakage Current, Fo	rward	$V_{GS} = 1$	30 V, V _{DS} = 0 V		-	-	100	nA	
GSSR	Gate-Bo	ody Leakage Current, Re	verse	V _{GS} =	-30 V, V _{DS} = 0 V			1	-100	nA	
On Characte	ristics										
V _{GS(th)}	Gate Th	reshold Voltage		$V_{DS} = V_{DS}$	V _{GS} , I _D = 250 μΑ	1	2.0		4.0	V	
R _{DS(on)}	Static D On-Res	rain-Source istance		V _{GS} = 10 V, I _D = 0.15 A		-	9.3	11.5	Ω		
9 _{FS}	Forward	d Transconductance		V _{DS} = 4	40 V, I _D = 0.3 A		\	0.75		S	
Dynamic Ch	aracteristi	cs									
C _{iss}	Input Ca	apacitance			25 V, V _{GS} = 0 V,			130	170	pF	
C _{oss}	Output	Capacitance		f = 1.0	MHz			19	25	pF	
C _{rss}	Reverse	e Transfer Capacitance						3.5	6	pF	
Switching C	haracteris	tics									
t _{d(on)}	Turn-Or	n Delay Time		$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 1.1 \text{ A},$ $R_{G} = 25 \Omega$			7	24	ns		
t _r	Turn-Or	n Rise Time						21	52	ns	
t _{d(off)}	Turn-Of	f Delay Time				-	13	36	ns		
t _f	Turn-Of	f Fall Time				(Note 4)		27	64	ns	
Qg	Total Ga	ate Charge		V _{DS} = 480 V, I _D = 1.1 A, V _{GS} = 10 V			-	4.8	6.2	nC	
Q _{gs}	Gate-So	ource Charge						0.7		nC	
Q _{gd}	Gate-D	rain Charge				(Note 4)		2.7		nC	
Drain-Sourc	e Diode Cl	haracteristics and Maxi	mum Rat	ings							
Is	Maximu	m Continuous Drain-Sou	Irce Diode	Forwar	d Current				0.3	А	
sм	Maximu	m Pulsed Drain-Source	Diode For	ward Cu	irrent				1.2	А	
V _{SD}	_	ource Diode Forward Vo			0 V, I _S = 0.3 A				1.4	V	
t _{rr}		e Recovery Time			0 V, I _S = 1.1 A,		-	190		ns	
		e Recovery Charge			= 100 A/µs			0.53		μC	
Q _{rr}	Reverse	e Recovery Charge									

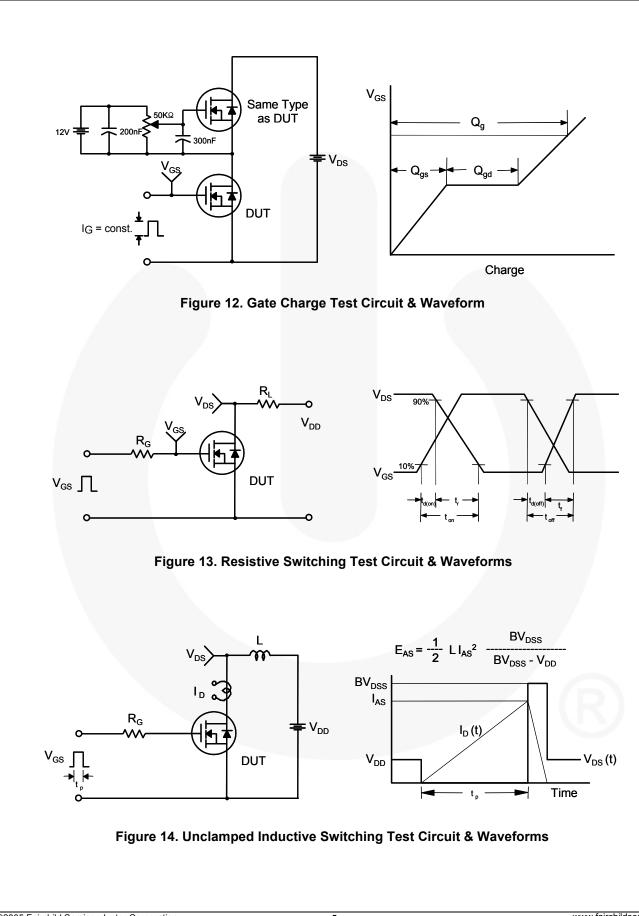
4. Essentially independent of operating temperature.

5. a) Reference point of the R_{0,1} is the drain lead.
b) When mounted on 3"x4.5" FR-4 PCB without any pad copper in a still air environment (R_{0,JA} is the sum of the junction-to-case and case-to-ambient thermal resistance. R_{0CA} is determined by the user's board design)

FQN1N60C — N-Channel QFET® MOSFET

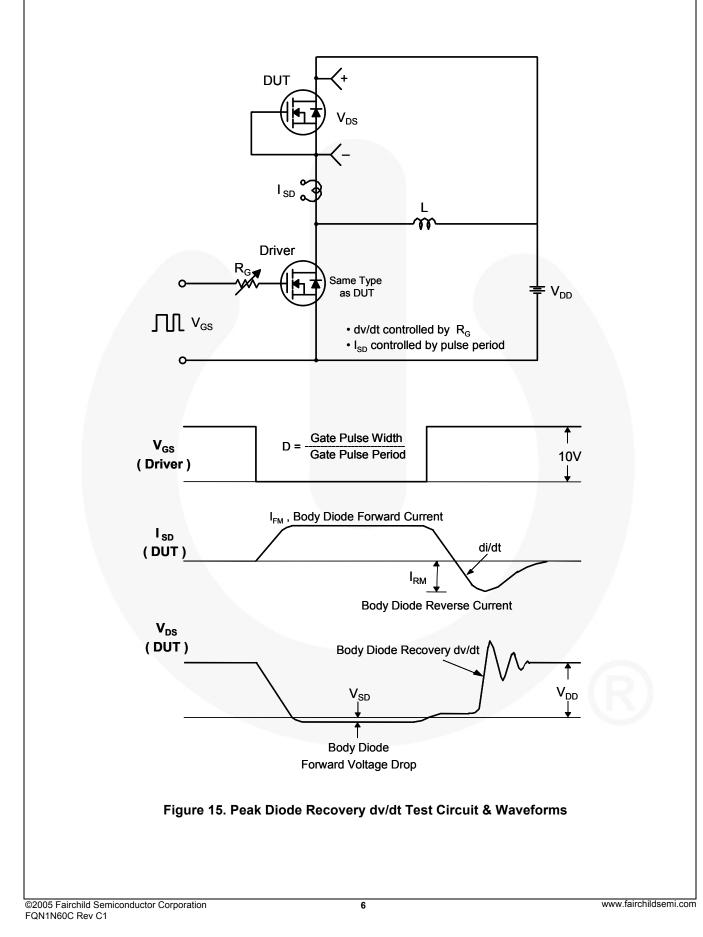

10

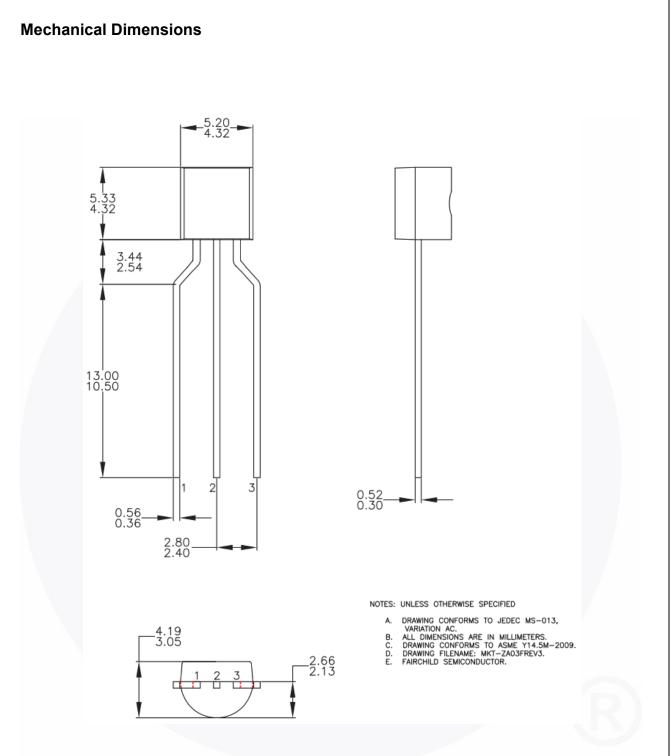
1.4


Typical Performance Characteristics Figure 1. On-Region Characteristics **Figure 2. Transfer Characteristics** V 15.0 10.0 8.0 7.0 6.5 6.0 5.5 V Top : 10 I_D, Drain Current [A] 10⁰ l_p, Drain Current [A] 150<u>°</u>C 10 € Notes : 1.250µs P 2.T_c = 25℃ Notes : 1. V_{DS} = 40V 2. 250µ s Pulse Test 10⁻¹ 10⁻² 2 6 8 10 10⁰ 10¹ V_{GS}, Gate-Source Voltage [V] V_{DS'} Drain-Source Voltage [V] Figure 3. On-Resistance Variation vs. Figure 4. Body Diode Forward Voltage Drain Current and Gate Voltage Variation vs. Source Current and Temperatue 30 Reverse Drain Current [A] 25 R_{DS(ON)} [Ω], Drain-Source On-Resistance $V_{GS} = 10V$ 20 10 15 = 20V 1. V_{cs} = 0V 2. 250μ s Pulse 25 گ ※ Note : T, = 25℃ I_{DR}, ں لے 0.0 10 0.5 1.0 1.5 2.0 2.5 0.2 0.4 1.0 1.2 0.6 0.8 I_D, Drain Current [A] $V_{_{\rm SD}}$, Source-Drain voltage [V] **Figure 5. Capacitance Characteristics Figure 6. Gate Charge Characteristics** 25 = C_{gs} + C_{gd} (C_{gs} = shorted = C_{gs} + C_{gd} = 120V 200 Gate-Source Voltage [V] V_{DS} = 300V = 480\ Capacitance [pF] 100 $V_{gs'}$ 50 2 K Note : L = 1.1A 0 0 0 10 10⁰ 10 Q_G, Total Gate Charge [nC] V_{DS}, Drain-Source Voltage [V] ©2005 Fairchild Semiconductor Corporation 3

www.fairchildsemi.com

FQN1N60C Rev C1




FQN1N60C — N-Channel QFET[®] MOSFET

www.fairchildsemi.com

FQN1N60C — N-Channel QFET[®] MOSFET

Figure 16. TO92, Molded, 3-Lead, 0.200 In Line Spacing LD Form (J61Z Option)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TO92-F03

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

intended to be an exhaustive list of	an such nauemarks.		
AccuPower™ Ax-CAP®* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ CTL™ CUrrent Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPAR® EfficentMax™ ESBC™ Fairchild® Fairchild® Fairchild® FacT Quiet Series™ FACT® FAST® FastvCore™ FETBench™ FPS™	All such trademarks. F-PFS™ GreenBridge™ Green FPS™ Green FPS™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound and Better™ MegaBuck™ MICROCOUPLER™ MicroPak2 MicroPak2 Micro	PowerTrench [®] PowerXS [™] Programmable Active Droop [™] QFET [®] QS [™] Quiet Series [™] RapidConfigure [™] Saving our world, 1mW/W/kW at a time [™] SignalWise [™] SmartMax [™] SMART START [™] Solutions for Your Success [™] SPM [®] STEAL THI [™]	Sync-Lock TM EGENERAL TinyBoost [®] TinyBuck [®] TinyCalc TM TinyLogic [®] TINYOPTO TM TinyPOWer TM TinyPWM TM TinyPWM TM TranSIC TM

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.