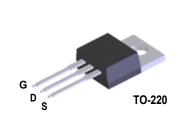
FAIRCHILD

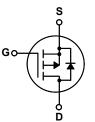
SEMICONDUCTOR[®]

FQP17P06 P-Channel QFET[®] MOSFET - 60 V, - 17 A, 120 mΩ

Description

This P-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor[®]'s proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state resistance, and to provide superior switching performance and high avalanche energy strength. These devices are suitable for switched mode power supplies, audio amplifier, DC motor control, and variable switching power applications.

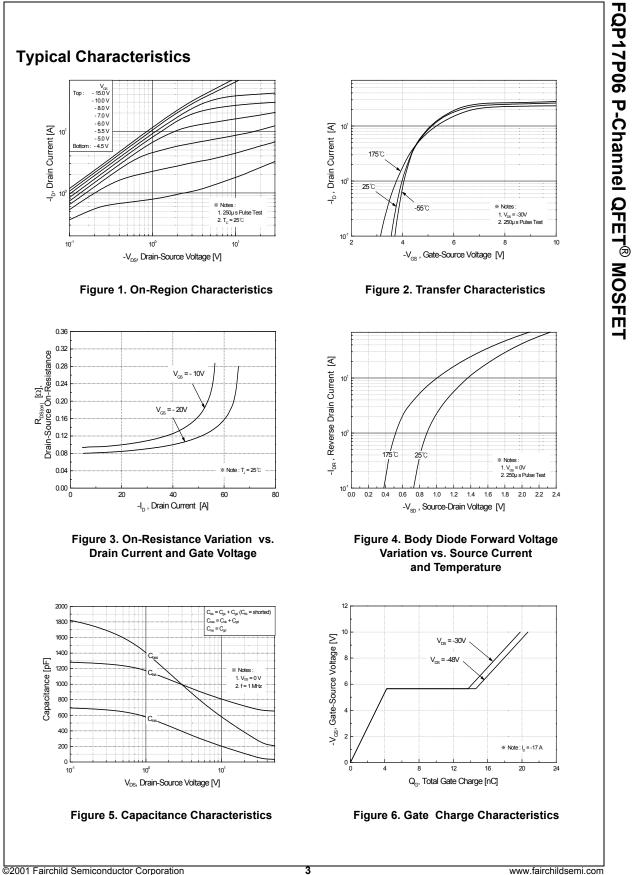

Features


- 17 A, - 60 V, $\mathsf{R}_{DS(on)}$ = 120 m Ω (Max.) @ V_{GS} = - 10 V, ID = - 8.5 A

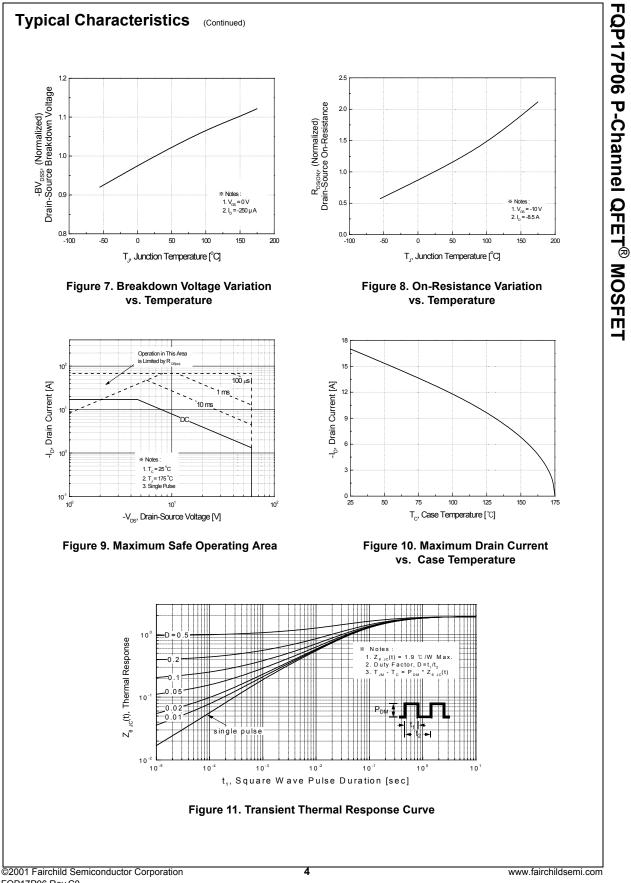
FQP17P06 P-Channel QFET[®] MOSFET

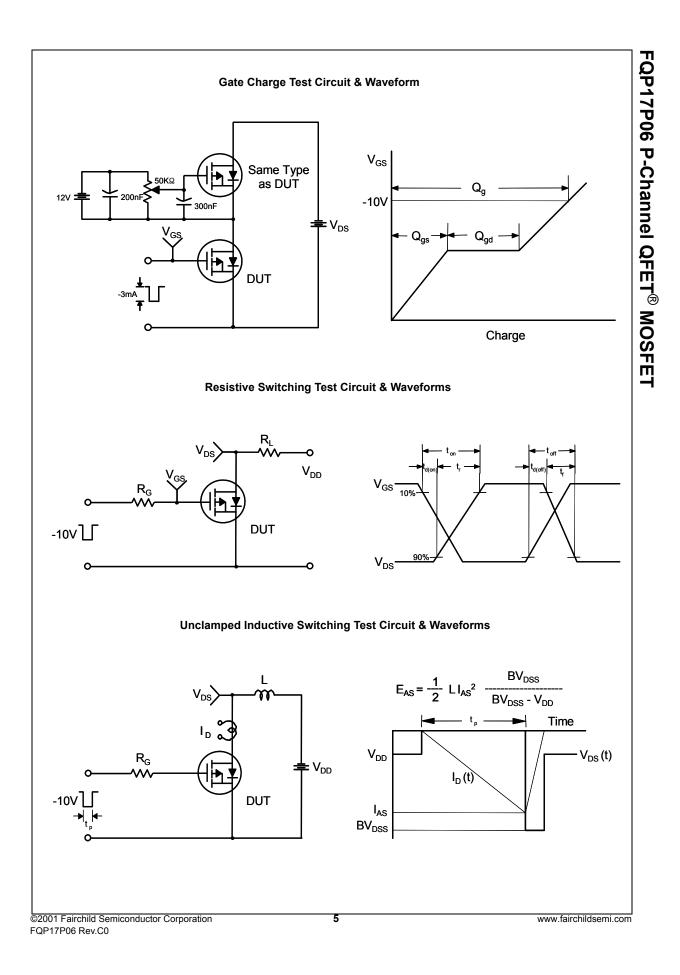
March 2013

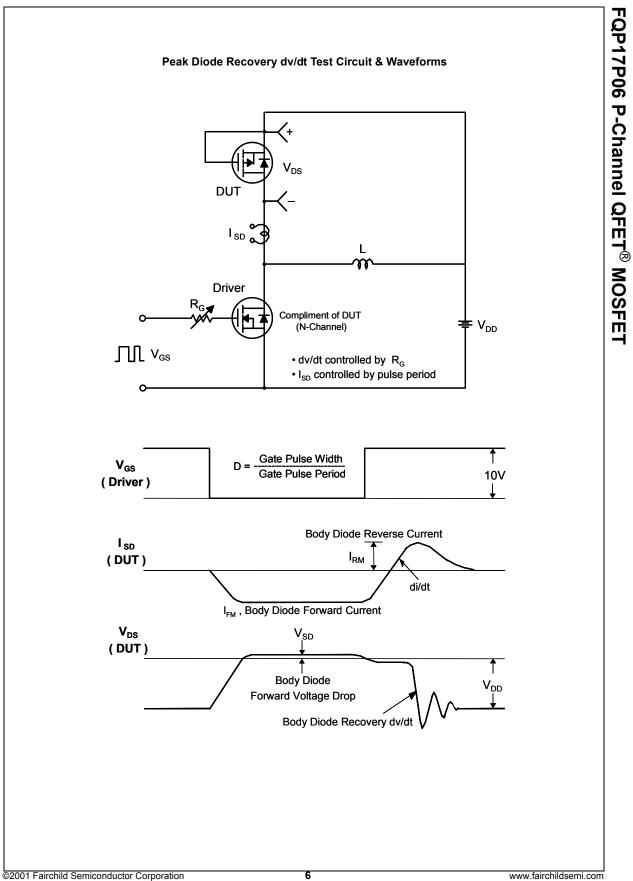
- Low Gate Charge (Typ.21 nC)
- Low Crss (Typ. 80 pF)
- 100% Avalanche Tested
- 175°C Maximum Junction Temperature Rating

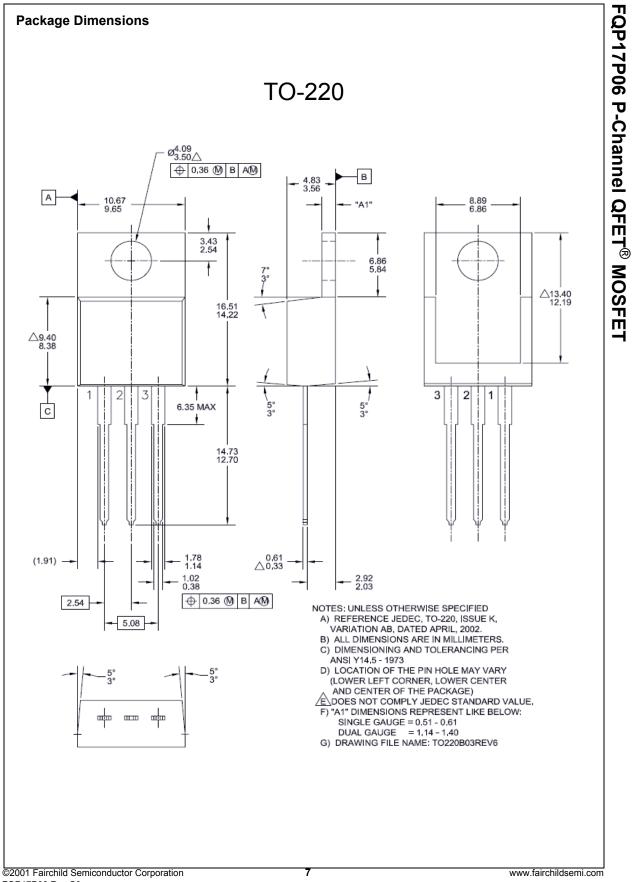

Absolute Maximum Ratings T_c = 25°C unless otherwise noted

Symbol	Parameter		FQP17P06	Unit	
V _{DSS}	Drain-Source Voltage Drain Current - Continuous (T _C = 25°C)			-60	V
I _D			°C)	-17	A
		- Continuous (T _C = 10	O°C)	-12	A
I _{DM}	Drain Current	- Pulsed	(Note 1)	-68	А
V _{GSS}	Gate-Source Voltage			± 25	V
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	300	mJ
I _{AR}	Avalanche Current		(Note 1)	-17	Α
E _{AR}	Repetitive Avalanche Energy		(Note 1)	7.9	mJ
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	-7.0	V/ns
PD	Power Dissipation (T _C = 25°C)			79	W
	- Derate above 25°C			0.53	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +175	°C	
ΤL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds			300	°C
'L				500	C


Thermal Characteristics


Symbol	Parameter	FQP17P06	Unit
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	1.9	°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink, Typ.	0.5	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction-to-Ambient, Max.	62.5	°C/W


	Parameter	Test Conditions	Min	Тур	Мах	Unit
Off Cha	racteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-60			V
ΔBV _{DSS} / ΔΤ.	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, Referenced to 25°C		-0.06		V/°C
I _{DSS}		V _{DS} = -60 V, V _{GS} = 0 V			-1	μA
	Zero Gate Voltage Drain Current	V _{DS} = -48 V, T _C = 150°C			-10	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward V _{GS} = -25 V, V _{DS} = 0 V				-100	nA
I _{GSSR}	Gate-Body Leakage Current, Reverse	V_{GS} = 25 V, V_{DS} = 0 V			100	nA
On Cha	racteristics					
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = -250 μA	-2.0		-4.0	V
R _{DS(on)}	Static Drain-Source $V_{GS} = -10 \text{ V}, \text{ I}_D = -8.5 \text{ A}$ On-Resistance $V_{GS} = -10 \text{ V}, \text{ I}_D = -8.5 \text{ A}$			0.094	0.12	Ω
9 _{FS}	Forward Transconductance	V _{DS} = -30 V, I _D = -8.5 A		9.3		S
C _{iss}	Input Capacitance	$V_{\rm DS}$ = -25 V, $V_{\rm GS}$ = 0 V,		690	900	pF
	ic Characteristics			690	900	nE
		f = 1.0 MHz		205	400	-
C _{oss}	Output Capacitance	f = 1.0 MHz		325	420	pF
	Reverse Transfer Capacitance	f = 1.0 MHz		325 80	420 105	p⊦ pF
C _{rss} Switchi	Reverse Transfer Capacitance ng Characteristics	f = 1.0 MHz		80	105	pF
C _{rss} Switchi	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time	f = 1.0 MHz V _{DD} = -30 V, I _D = -8.5 A,		80	105 35	pF ns
C _{rss} Switchi t _{d(on)} t _r	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time			80 13 100	105 35 210	pF ns ns
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	V_{DD} = -30 V, I _D = -8.5 A, R _G = 25 Ω		80 13 100 22	105 35 210 55	ns ns ns
$\frac{C_{rss}}{Switchi}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	V_{DD} = -30 V, I _D = -8.5 A, R _G = 25 Ω (Note 4)	 	80 13 100 22 60	105 35 210 55 130	pF ns ns ns ns
$\frac{C_{rss}}{Switchi}$ $\frac{t_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ Q_g	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	V_{DD} = -30 V, I _D = -8.5 A, R _G = 25 Ω (Note 4) V _{DS} = -48 V, I _D = -17 A,		80 13 100 22 60 21	105 35 210 55 130 27	pF ns ns ns nC
$\frac{C_{rss}}{Switchi}$ $\frac{f_{d(on)}}{t_r}$ $\frac{t_{d(off)}}{t_f}$ $\frac{Q_g}{Q_{gs}}$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	V_{DD} = -30 V, I _D = -8.5 A, R _G = 25 Ω (Note 4)	 	80 13 100 22 60 21 4.2	105 35 210 55 130 27 	pF ns ns ns nc nC
$\frac{\text{Switchi}}{t_{d(on)}}$ $\frac{t_r}{t_{d(off)}}$ $\frac{t_f}{Q_g}$ Q_{gs} Q_{gd}	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	V_{DD} = -30 V, I _D = -8.5 A, R _G = 25 Ω (Note 4) V_{DS} = -48 V, I _D = -17 A, V _{GS} = -10 V (Note 4)	 	80 13 100 22 60 21	105 35 210 55 130 27	pF ns ns ns nC
C_{rss} Switchi $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs} Q_{gd} Drain-S	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an	$V_{DD} = -30 \text{ V, } I_D = -8.5 \text{ A,}$ $R_G = 25 \Omega$ (Note 4) $V_{DS} = -48 \text{ V, } I_D = -17 \text{ A,}$ $V_{GS} = -10 \text{ V}$ (Note 4) (Note 4)	 	80 13 100 22 60 21 4.2 10	105 35 210 55 130 27 	pF ns ns ns nC nC nC
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{r}}{t_{d(off)}}$ $\frac{t_{d(off)}}{Q_{gs}}$ Q_{gs} Q_{gd} $Drain-S$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Dio	$V_{DD} = -30 \text{ V}, \text{ I}_{D} = -8.5 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4) $V_{DS} = -48 \text{ V}, \text{ I}_{D} = -17 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4) (Note 4) (Note 4) (Note 4)	 	80 13 100 22 60 21 4.2 10 	105 35 210 55 130 27 	pF ns ns ns nC nC nC
C _{rss} Switchi t _{d(on)} t _r t _{d(off)} t _f Q _g Q _{gs} Q _{gd} Drain-S I _S	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics and Maximum Continuous Drain-Source Diode F	$V_{DD} = -30 \text{ V}, \text{ I}_{D} = -8.5 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4) $V_{DS} = -48 \text{ V}, \text{ I}_{D} = -17 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4) (Note 4) (Note 4) (Note 4) (Note 4)	 	80 13 100 22 60 21 4.2 10	105 35 210 55 130 27 	pF ns ns ns nC nC nC A A
$\frac{C_{rss}}{Switchi}$ $\frac{Switchi}{t_{d(on)}}$ $\frac{t_{r}}{t_{d(off)}}$ $\frac{t_{d(off)}}{Q_{gs}}$ Q_{gs} Q_{gd} $Drain-S$	Reverse Transfer Capacitance ng Characteristics Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Source Diode Characteristics an Maximum Continuous Drain-Source Dio	$V_{DD} = -30 \text{ V}, \text{ I}_{D} = -8.5 \text{ A},$ $R_{G} = 25 \Omega$ (Note 4) $V_{DS} = -48 \text{ V}, \text{ I}_{D} = -17 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4) (Note 4) (Note 4) (Note 4) (Note 4)	 	80 13 100 22 60 21 4.2 10 	105 35 210 55 130 27 	pF ns ns ns nC nC nC



FQP17P06 Rev.C0

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ AX-CAP® BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild® Fairchild Semiconductor® FACT Quiet Series™ **FACT**[®] FAST® FastvCore™

Green FPS[™] Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC® OPTOPLANAR[®]**

Global Power ResourceSM

FPS™

F-PFS™

FRFET®

Green Bridge™

PowerTrench[®] PowerXS™ Programmable Active Droop™ QFET[®] QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM[®] STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®] SvncFET™

SYSTEM^{®'} TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC® TriFault Detect™ TRUECURRENT®* μSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

Sync-Lock™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FETBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1 intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2 A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Product Status	Definition		
Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		
	Formative / In Design First Production Full Production		

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC